

# TRANSPORTATION IMPACT STUDY

4 88





59 Craigburn Drive Dartmouth, Nova Scotia Canada, B2X 3E6, Phone: (902) 233-1152 E-mail: Roger@Trans4m.ca

HRM Apartments 10 Cumberland Drive Cole Harbour, Nova Scotia

# TABLE OF

# 1. INTRODUCTIO

- 1.1 EXISTING ROADWAYS
- 1.2 ANALYSIS TIME HORIZO
- 1.3 PEAK HOURS

# 2. EXISTING CON

- 2.1 ACTIVE TRANSPORTATIO
- 2.2 TRANSIT
- 2.3 COLLISION REVIEW

# 3. FUTURE CON

- 3.1 THE PROPOSED DEVEL
- 3.2 TRIP GENERATION
- 3.3 TRIP DISTRIBUTION ANI

# 4. ANALYSIS

- 4.1 TRANSPORTATION MO
- 4.2 COLE HARBOUR ROAD
- 4.3 CUMBERLAND DRIVE A

# 5. CONCLUSION

| APPENDIX A  | TRAFFIC C |
|-------------|-----------|
| APPENDIX B: | TRIP GEN  |
| APPENDIX C: | TRIP DIST |
| APPENDIX D: | SYNCHRO   |

# TRANS4M RESIDENTIAL DEVELOPMENT

This Transportation Impact Assessment was prepared to evaluate the potential impacts of new or changing development on the existing transportation network. The "Transportation Network" includes roadways, driveways, trails, sidewalks, parking facilities, transit infrastructure, trucks, and other infrastructure associated with moving people and goods from one place to another. This infrastructure connects an unlimited number of origins and destinations including residential, commercial, industrial, institutional and public land uses. The users of these networks are many and can include a wide range of private and commercial vehicles, trucks, buses, pedestrians, cyclists and other vulnerable road users.

This report was prepared using industry standard guidelines for such studies and utilizes the most recent information that is considered reasonable and practical for the study, at the time the study was prepared. Things change with time, therefore any recommendations, conclusions or findings contained in this report should be reevaluated as elements of the surrounding environment change.

| F                                                                         |                   |
|---------------------------------------------------------------------------|-------------------|
| DN                                                                        | 1                 |
| N                                                                         | 2<br>3<br>3       |
| NDITIONS<br>on                                                            | 4<br>5<br>5       |
| DITIONS<br>OPMENT                                                         | 6<br>7<br>7       |
| D ASSIGNMENT<br>DELLING<br>/ CUMBERLAND / FOREST HILLS<br>ND NEW DRIVEWAY | 7<br>8<br>9<br>10 |
| IS                                                                        | 11                |

COUNTS IERATION FRIBUTION AND ASSIGNMENT O REPORTS

# SUMMARY EXECUTIVE



# **EXECUTIVE SUMMARY**

The proposed new residential development creates additional density on a property currently primarily covered with asphalt parking lots. The higher density proposal meets with HRM's goals to finding solutions to the ongoing housing crisis, and is consistent with integrated mobility initiatives as the development is located in close proximity to transit and active transportation infrastructure.

The Trans4m Development Group is pleased to submit this Transportation Impact Study for the construction of a new multi-story building on an existing residential site located along the Cole Harbour Road / Portland Street, and Forest Hills Parkway Transportation corridors.

The proposed development includes up to 146 residential units with new underground and surface parking areas, and a new driveway to Cumberland Drive. The development also includes the expansion of the lower parking lot to accommodate vehicles displaced by the new building and associated parking area.

The development is located near the corner of Cole Harbour Road and the Forest Hills Parkway meaning residents have access to major connective transportation routes. The development is also well situated to give residents the opportunity to use adjacent transit and active transportation infrastructure. In this context, this intersection is subject to the ongoing Portland Street / Cole Harbour Road Functional Design Study. It is anticipated that the study will make various recommendations for this section of the Cole Harbour Road corridor. As shown in this study, the new development traffic volumes have minimal impact on the adjacent roadways and intersections, therefore it is assumed the future roadway and intersections will similarly have negligible impact from the new development.

Overall, this development can be accommodated within the existing road network with minimal impact to existing operations. Should there be any questions, comments or additional information required, please contact the undersigned at Roger@Trans4m.ca.

Best regards,

#### Fathom

Roger N. Boychuk, P. Eng. SENIOR TRANSPORTATION ENGINEER **TRANS4M DEVELOPMENT GROUP** 



# 1. INTRODUCTION

# HRM Apartments is pursuing the development of a multi-unit residential development complex at 10 Cumberland Drive, Dartmouth Nova Scotia.

The Trans4m Development Group was retained by HRM Apartments to prepare a Transportation Impact Study (TIS) for a proposed development located immediately south of Cole Harbour Road and east of Cumberland Drive in Cole Harbour, Nova Scotia. The proposed development is expected to contain about 146 units within a multi-storey residential building complete with a combination of underground and surface parking. The new residential building will be constructed just west of an existing residential building in an area that serves as an existing surface parking lots as shown in the figure below.

The areas surrounding the development are primarily residential in nature, composed of singlefamily dwelling units with some nearby multi-unit buildings. There are significant commercial establishments surrounding the intersection of Cumberland / Cole Harbour Road intersection as well as along Cole Harbour Road extending east and west of the site. The surrounding area also includes a number of institutional uses including a number of churches and schools.

Cole Harbour Road transitions to Portland Street west of the development at Caldwell Road and continues as a primary connector to Downtown Dartmouth, intersecting with a number of major roadways including the Forest Hills Parkway, Caldwell Road and the Circumferential Highway. East of the site, Cole Harbour Road continues as Route 207 / Marine Drive along the eastern shore connecting to Route 7 about 30 kilometres northeast of the site.

Cumberland Drive is lined with individual residences and continues south connecting to Colby Drive, providing access to the Colby Village.



## 1.1 EXISTING ROADWAYS

**Cole Harbour Road** (image taken east of Cumberland Drive facing west) has a 5-lane cross section, including 2-lanes in each direction, a center left turn lane to Cumberland Drive and channelized right turn to Forest Hills Parkway. The eastbound approach (west side) has a similar configuration. Adjacent to the development along Cole Harbour Road is the RBC Royal Bank and a bus lay-by. Cole Harbour Road includes concrete curb and gutter and sidewalks separated by grassed boulevards.

Cumberland Drive (image taken south of Cole Harbour Road facing north) south of Cole Harbour Road has a three-lane asphalt cross section adjacent to the development just over 12 meters in width expanding to 16 meters near the intersection to accommodate the westbound to southbound right turn movement. There are two northbound lanes approaching Cole Harbour Road with a dedicated left turn lane and a shared through/right land with right turn channelization. The cross-section includes concrete curb and gutter and concrete sidewalk with grassed boulevard on both sides of the road, transitioning to asphalt curb south of the existing developments driveway. A bus stop is located directly in front of the development on Cumberland Drive.

The figure to the right shows the signalized intersection of **Cole Harbour Road and Cumberland Drive.** It shows the southbound approach is composed of a 5 lane cross section with dedicated southbound left turn lane and right turn channelization. The westbound right turn movement includes a free-flowing receiving lane for the full 5 lane section. The intersection includes pedestrian crossings on all 4 legs of the intersection with pedestrians heads and actuated pedestrian push buttons.

Ambro Lane is located immediately east of the development and is a 9 meters wide, two-lane urban local roadway that includes asphalt curb on both sides of the road with no sidewalks. There is a driveway to the development's existing building located about 50 meters south of Cole Harbour Road as shown in the figure to the right.



## 1.2 ANALYSIS TIME HORIZON

This study addresses a 10-year time horizon for the full build-out of the development (build-out plus 5 years). Time horizons established for the analysis include:

- » 2024 baseline which includes existing traffic on the road network;
- » 2034 future conditions with background traffic and full development of the proposed seniors residential development.

### 1.3 PEAK HOURS

Cole Harbour Road and the Forest Hills Parkway are major commuter routes during the week and adjacent commercial land uses actively generate trips during the weekday peak periods. It is recognized that there may be some additional peak periods during weekends due to the commercial nature of the area, though such peaks are typically less concentrated than weekday commuter peaks. For these reasons, the peak hours for analysis were established as the AM and PM weekday peak hours.

# 2. EXISTING CONDITIONS

#### **Existing Traffic Volumes**

Recent and historical traffic counts were obtained from HRM for the study area with the most recent available data dated 2016 & 2017. Therefore, an new intersection turning movement count was conducted at the intersection at Cole Harbour Road and Forest Hills Parkway / Cumberland Drive. The counts were performed using the Miovision automated traffic count technologies and included site visits during the peak hours of counts. All Miovision counts included volumes of trucks, cyclists and pedestrians through the intersection and are included in Appendix A of this report.

#### Background Traffic Growth

Traffic counts on Cole Harbour Road east of Bissett Road show a decline in traffic between 2005 and 2021 at the Nova Scotia Public Works count location, though traffic volumes have been increasing in many parts of HRM. It is assumed that the ongoing Portland Street / Cole Harbour Road corridor study will include greater detail on area traffic growth, but for the purposes of this study, a 2% annual growth rate has been assumed to represent the higher current level of development in the HRM area.

## 2.1 ACTIVE TRANSPORTATION

The proposed development ( $\bigcirc$ ) is located near Cole Harbour Road and Cumberland Drive, major roads that includes sidewalk on both sides of the road providing access to nearby residential and commercial land uses. The development is also in close proximity to the Cole Harbour Elementary School Parks, Bissett Lake Park and the extensive trails system that interconnects these parks with the Trans Canada Trail, Bissett Lake Trail and the Salt Marsh Trail. As shown in the figure below taken from the HRM active transportation website, the desired bikeway lane ending at Cole Harbour Road (purple line) was constructed in 2022/2023 providing improved access to Cole Harbour Place and the various sports facilities associated with that development.



## 2.2 TRANSIT

The proposed development is located near the east end of a robust transit network concentrated around the Portland Hills Transit Terminal located about 1.3 kilometres west of the proposed development. The development itself has direct access to Routes 59, 159, 401 on the south side of Cole Harbour Road with

an additional 4 routes along Forrest Hills Parkway (Routes 63, 68, 168A and 168B). All routes stop at the Portland Hills Transit Terminal that in turn provide connections with up to 15 different routes including the Portland Street Bus Rapid Transit Link 5.

Existing bus stops are located directly in front of the development on Cumberland Drive, on Cole Harbour Road east of Cumberland (150m walk), and west of Cumberland (250 meter walk to the westbound stop and 300 meters to the eastbound stop).



## 2.3 COLLISION REVIEW

Available collision records in the vicinity of the Forest Hills Parkway and Cumberland intersection were reviewed (as provided on the HRM Open Data Portal) with a formatted data table included in Appendix B. Records included data between 2018 and 2023 and summary charts of the year and type of collision are provided below.





The collision records show about 82 collisions in the vicinity of the intersection with relatively even distribution over the 6 year time period (between 12 and 17 collisions each year). Collisions associated with left turn movements accounted for over 40% of the collisions followed by about 30% with for rear end collisions.

A further examination of the data shows that:

- 28% were associated with a young demographic.
- 55% suggested aggressive driving behaviours were a contributing factor.
- 20% identified distracted driving as a contributing factor.
- There were no identified bicycle collisions, and 2 of the 82 collisions involved a pedestrian.

# 3. FUTURE CONDITIONS

# 3.1 THE PROPOSED DEVELOPMENT

The existing site consists of a single 4 storey building supported by about 34 surface parking spaces in a single aisle parking lot on the lower end of the site near Ambro Lane, and a second upper looped parking lot close to Cumberland Drive with about 60 surface parking spaces.

The proposed development adds a second 8-storey building with up to 146 units within a multi-storey residential building adjacent to Cumberland Drive. The building includes 0111a parking podium as well as a rear surface parking lot with about 40 parking spaces, and an underground parkade. The proposed plan also expands the lower parking lot from 34 to about 74 surface parking spaces. Access to the new surface and underground parking areas is provided by a new driveway located near the south end of the site, about 35 meters south of the existing driveway, which is planned to be closed as part of the new development.

The grades across the site dictate that access to the lower building will remain dedicated off of Ambro Lane, which is expected to see a slight increase in traffic volumes due to the additional parking spaces being added. Access the to the new upper building will be restricted to the Cumberland Driveway driveway with direct access to the signalized intersection at Cumberland Drive and Cole Harbour Road.



## **3.2 TRIP GENERATION**

New trips generated by the development were based on guidance provided from the Institute of Transportation Engineers (ITE) Trip Generation Guide (11th Edition). The table below summarizes the trip generation estimates for the new site once full build out has been completed.

| Land Use              | Trip | #     | Variable | A     | M Pea | ak    |       | РМ Ре | ak    |
|-----------------------|------|-------|----------|-------|-------|-------|-------|-------|-------|
|                       | Code | Units |          | Enter | Exit  | TOTAL | Enter | Exit  | TOTAL |
| New Mid-Rise Building | 221  | 146   | Units    | 12    | 41    | 53    | 35    | 22    | 57    |
| New Trips to Network  |      | 146   |          | 12    | 41    | 53    | 35    | 22    | 57    |

Note that some existing movements are present to and from the existing driveway today that will be relocated to the lower parking lot to Ambro Lane. To remain conservative, these volumes have not been used to reduce the new trip projections. These volumes are very low and will have no noticeable impact to traffic operations at the Ambro Lane intersection or the Ambro Lane / Cole Harbour Road intersection and therefore have not been addressed further in this report.

#### Transit, Active Transportation and Transportation Demand Management

Given the proximity to the Portland Hills Transit Terminal and adjacent transit infrastructure, It is anticipated that there will be some reliance on transit services. Similarly, access to significant active transportation infrastructure is likely to increase modal share away from passenger cars. Some of these types of trips are accounted for in the trip generation assumptions made within the ITE Trip Generation Guide, and other trips may distribute themselves outside of typical peak hours

given the overall levels of transportation congestion currently experienced in the greater HRM core areas. Nonetheless, for the purposes of this study, no reductions in generated trips have been applied in order to keep the analysis conservative.

## 3.3 TRIP DISTRIBUTION **AND ASSIGNMENT**

It is assumed that traffic will distribute itself through the network in a manner similar to the existing traffic patterns. This suggests that most traffic will approach and depart the development on the Cole Harbour Road west leg and the Forest Hills north leg as shown in the figure to the right.

All new traffic is expected to enter and exit the site from the new driveway to Cumberland Drive resulting in right and left turn entry movements from Cumberland Drive and right and left turn exit movements from the new driveway.



# 4. ANALYSIS

#### TRANSPORTATION MODELLING 4.1

A traffic model was prepared using the Synchro/SimTraffic (v.11) platform for the weekday AM and PM peak hours of analysis. The model was used to gain insight into traffic operations and capacity utilization at the main intersections potentially impacted by the proposed development under each traffic loading scenario. Results are provided for the following scenarios:

- 2024 baseline conditions (existing traffic),
- 2034 conditions with background traffic only added to the road network,
- 2034 conditions with background traffic and development traffic added.

Detailed output reports for each of the scenarios is provided in Appendix D of this report and are summarized in the figures and tables within this section of the report. The analysis results and discussion address the 2 primary intersections impacted by the development:

- · Cole Harbour Road at the Cumberland / Forest Hills Parkway intersection, and
- New Driveway intersection with Cumberland Drive.

The primary information and measures of performance that are summarized in tabular form on the following pages at each intersection include:

- each peak period),
- Vehicle Control Delay (average seconds per vehicle),
- Volume to Capacity (V/C) ratio (1.0 = full capacity),
- Level of Service (A through F), and
- Queueing (95% queue length).

For each intersection, AM and PM peak summary tables are presented and include the volumes at that horizon followed by the estimated delay, volume to capacity ratios and queues at each time horizon. The tables are grouped by directional approach and results for shared lanes are grouped together. The tables are accompanied by a discussion of key finding for each horizon during each peak time period.

• Volume (actual or expected turning movement volumes at the intersection for each time horizon and

## 4.3 COLE HARBOUR ROAD / CUMBERLAND / FOREST HILLS

The tables below show the modelling results at this intersection for all movements during the AM and PM peak hours of traffic. Traffic patterns reflect the commuter nature of the intersection with the highest volumes occurring on Cole Harbour Road inbound during the AM peak and outbound during the PM peak. Secondary peak volumes can also be observed on Forest Hills Parkway with higher turn movements for the westbound and southbound right turns during the AM peak, and generally all southbound movements on Forest Hills during the PM peak.

Modelling results show that the relatively aggressive background traffic growth rate has the largest impact on operations at the intersection with only minor changes to measures of performance when the development traffic is added to the network. The highest volume to capacity ratios can be found on the peak direction through movements on Cole Harbour Road, though excess capacity is available at the intersection to accommodate green time adjustments as necessary to serve peak movements.



Based on the analysis, no improvements are required at this intersection to accommodate the proposed development.

| AN                                                                                       | I PEAK                                                                                                                                                                      | Cole H                                                                                                                     | larbour<br>EB                                                                                                                                                                                                                                                                                                                                                              | Road                                                                                                         | Cole H                                                                                                               | larbour<br>WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Road                                                                                                                                                  | Cumb                                                                                                                     | erland<br>NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Drive                                                                                                                                                             | Fores                                                                                                                     | t Hills F<br>SB                                                                                                                          | Prkwy                                                                                                                                                                          |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                          |                                                                                                                                                                             | Left                                                                                                                       | Thru                                                                                                                                                                                                                                                                                                                                                                       | Right                                                                                                        | Left                                                                                                                 | Thru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Right                                                                                                                                                 | Left                                                                                                                     | Thru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Right                                                                                                                                                             | Left                                                                                                                      | Thru                                                                                                                                     | Right                                                                                                                                                                          |
|                                                                                          | Vol veh/hr                                                                                                                                                                  | 118                                                                                                                        | 223                                                                                                                                                                                                                                                                                                                                                                        | 47                                                                                                           | 50                                                                                                                   | 685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 236                                                                                                                                                   | 166                                                                                                                      | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48                                                                                                                                                                | 154                                                                                                                       | 111                                                                                                                                      | 264                                                                                                                                                                            |
| 4<br>ng<br>nes                                                                           | V/C Ratio                                                                                                                                                                   | 0.56                                                                                                                       | 0.2                                                                                                                                                                                                                                                                                                                                                                        | 22                                                                                                           | 0.11                                                                                                                 | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 82                                                                                                                                                    | 0.36                                                                                                                     | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54                                                                                                                                                                | 0.44                                                                                                                      | 0.23                                                                                                                                     | 0.45                                                                                                                                                                           |
| Inn Inn                                                                                  | Delay sec/veh                                                                                                                                                               | 22.1                                                                                                                       | 14                                                                                                                                                                                                                                                                                                                                                                         | 1.5                                                                                                          | 11.25                                                                                                                | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | i.6                                                                                                                                                   | 17.8                                                                                                                     | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .6                                                                                                                                                                | 19.5                                                                                                                      | 23.1                                                                                                                                     | 6.8                                                                                                                                                                            |
| <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre> | LOS                                                                                                                                                                         | С                                                                                                                          | E                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                            | В                                                                                                                    | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                     | В                                                                                                                        | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                   | В                                                                                                                         | С                                                                                                                                        | Α                                                                                                                                                                              |
|                                                                                          | 95% Q m                                                                                                                                                                     | 19.7                                                                                                                       | 21                                                                                                                                                                                                                                                                                                                                                                         | .5                                                                                                           | 9.3                                                                                                                  | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .2                                                                                                                                                    | 29.7                                                                                                                     | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .4                                                                                                                                                                | 27.8                                                                                                                      | 26.1                                                                                                                                     | 19.6                                                                                                                                                                           |
| p                                                                                        | Vol <i>veh/hr</i>                                                                                                                                                           | 144                                                                                                                        | 272                                                                                                                                                                                                                                                                                                                                                                        | 56                                                                                                           | 61                                                                                                                   | 835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 283                                                                                                                                                   | 202                                                                                                                      | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 58                                                                                                                                                                | 188                                                                                                                       | 135                                                                                                                                      | 322                                                                                                                                                                            |
| fic our                                                                                  | V/C Ratio                                                                                                                                                                   | 0.72                                                                                                                       | 0.2                                                                                                                                                                                                                                                                                                                                                                        | 27                                                                                                           | 0.14                                                                                                                 | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 97                                                                                                                                                    | 0.48                                                                                                                     | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70                                                                                                                                                                | 0.70                                                                                                                      | 0.30                                                                                                                                     | 0.60                                                                                                                                                                           |
| 203<br>Sgr<br>rafi                                                                       | Delay sec/veh                                                                                                                                                               | 33.5                                                                                                                       | 15                                                                                                                                                                                                                                                                                                                                                                         | 5.7                                                                                                          | 11.4                                                                                                                 | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.9                                                                                                                                                   | 20.9                                                                                                                     | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .1                                                                                                                                                                | 31.9                                                                                                                      | 24.1                                                                                                                                     | 13.4                                                                                                                                                                           |
| T act 7                                                                                  | LOS                                                                                                                                                                         | C                                                                                                                          | E                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                            | В                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )                                                                                                                                                     | C                                                                                                                        | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                 | C                                                                                                                         | C                                                                                                                                        | В                                                                                                                                                                              |
| 8                                                                                        | 95% Q m                                                                                                                                                                     | 34.2                                                                                                                       | 26                                                                                                                                                                                                                                                                                                                                                                         | 5.3                                                                                                          | 10.8                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.5                                                                                                                                                   | 36.0                                                                                                                     | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .5                                                                                                                                                                | 40.0                                                                                                                      | 31.0                                                                                                                                     | 38.4                                                                                                                                                                           |
| ent                                                                                      | Vol <i>veh/hr</i>                                                                                                                                                           | 144                                                                                                                        | 272                                                                                                                                                                                                                                                                                                                                                                        | 61                                                                                                           | 62                                                                                                                   | 835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 283                                                                                                                                                   | 228                                                                                                                      | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 62                                                                                                                                                                | 188                                                                                                                       | 141                                                                                                                                      | 322                                                                                                                                                                            |
| 2 In M                                                                                   | V/C Ratio                                                                                                                                                                   | 0.72                                                                                                                       | 0.2                                                                                                                                                                                                                                                                                                                                                                        | 27                                                                                                           | 0.14                                                                                                                 | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 97                                                                                                                                                    | 0.55                                                                                                                     | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75                                                                                                                                                                | 0.76                                                                                                                      | 0.31                                                                                                                                     | 0.60                                                                                                                                                                           |
| 203<br>Rgr                                                                               | Delay sec/veh                                                                                                                                                               | 33.5                                                                                                                       | 15                                                                                                                                                                                                                                                                                                                                                                         | 5.5                                                                                                          | 11.5                                                                                                                 | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.9                                                                                                                                                   | 22.7                                                                                                                     | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .1                                                                                                                                                                | 37.2                                                                                                                      | 24.                                                                                                                                      | 14.0                                                                                                                                                                           |
| eve                                                                                      | LOS                                                                                                                                                                         | C                                                                                                                          | E                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                            | В                                                                                                                    | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )                                                                                                                                                     | C                                                                                                                        | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )                                                                                                                                                                 | D                                                                                                                         | C                                                                                                                                        | В                                                                                                                                                                              |
| ШĞ                                                                                       | 95% Q m                                                                                                                                                                     | 34.2                                                                                                                       | 26                                                                                                                                                                                                                                                                                                                                                                         | 5.5                                                                                                          | 10.9                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.5                                                                                                                                                   | 40.4                                                                                                                     | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .6                                                                                                                                                                | 37.9                                                                                                                      | 32.1                                                                                                                                     | 39.8                                                                                                                                                                           |
|                                                                                          | ш <u> </u>                                                                                                                                                                  |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                       |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                   |                                                                                                                           |                                                                                                                                          |                                                                                                                                                                                |
|                                                                                          |                                                                                                                                                                             | Cole H                                                                                                                     | larbour                                                                                                                                                                                                                                                                                                                                                                    | r Road                                                                                                       | Cole H                                                                                                               | larbour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Road                                                                                                                                                  | Cumb                                                                                                                     | erland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drive                                                                                                                                                             | Fores                                                                                                                     | t Hills F                                                                                                                                | Prkwy                                                                                                                                                                          |
| PN                                                                                       | I PEAK                                                                                                                                                                      | Cole H                                                                                                                     | larbour<br>EB                                                                                                                                                                                                                                                                                                                                                              | Road                                                                                                         | Cole H                                                                                                               | larbour<br>WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Road                                                                                                                                                  | Cumb                                                                                                                     | erland<br>NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Drive                                                                                                                                                             | Fores                                                                                                                     | t Hills F<br>SB                                                                                                                          | Prkwy                                                                                                                                                                          |
| PN                                                                                       | 1 PEAK                                                                                                                                                                      | Cole H                                                                                                                     | larbour<br>EB<br>Thru                                                                                                                                                                                                                                                                                                                                                      | Road<br>Right                                                                                                | Cole H<br>Left                                                                                                       | larbour<br>WB<br>Thru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Road<br>Right                                                                                                                                         | Cumb<br>Left                                                                                                             | erland<br>NB<br>Thru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Drive<br>Right                                                                                                                                                    | Fores                                                                                                                     | t Hills F<br>SB<br>Thru                                                                                                                  | Prkwy<br>Right                                                                                                                                                                 |
| PN                                                                                       | I PEAK                                                                                                                                                                      | Cole H<br>Left<br>224                                                                                                      | larbour<br>EB<br>Thru<br>652                                                                                                                                                                                                                                                                                                                                               | Road<br>Right                                                                                                | Cole H<br>Left<br>41                                                                                                 | larbour<br>WB<br>Thru<br>414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Road<br>Right<br>132                                                                                                                                  | Cumb<br>Left<br>133                                                                                                      | erland<br>NB<br>Thru<br>186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Drive<br>Right<br>60                                                                                                                                              | Fores                                                                                                                     | t Hills F<br>SB<br>Thru<br>261                                                                                                           | Prkwy<br>Right<br>272                                                                                                                                                          |
| H<br>Ing<br>nes                                                                          | Vol <i>veh/hr</i><br>V/C Ratio                                                                                                                                              | Cole H<br>Left<br>224<br>0.70                                                                                              | larbour<br>EB<br>Thru<br>652<br>0. <sup>-</sup>                                                                                                                                                                                                                                                                                                                            | Road<br>Right<br>121<br>70                                                                                   | Cole H<br>Left<br>41<br>0.22                                                                                         | larbour<br>WB<br>Thru<br>414<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Road<br>Right<br>132<br>79                                                                                                                            | Cumb<br>Left<br>133<br>0.33                                                                                              | oerland<br>NB<br>Thru<br>186<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Drive<br>Right<br>60                                                                                                                                              | Fores                                                                                                                     | t Hills F<br>SB<br>Thru<br>261<br>0.42                                                                                                   | Prkwy<br>Right<br>272<br>0.38                                                                                                                                                  |
| 2024<br>disting<br>Numes                                                                 | Vol <i>veh/hr</i><br>V/C Ratio<br>Delay <i>sec/veh</i>                                                                                                                      | Cole F<br>Left<br>224<br>0.70<br>30.1                                                                                      | larbour<br>EB<br>Thru<br>652<br>0.<br>28                                                                                                                                                                                                                                                                                                                                   | Road<br>Right<br>121<br>70<br>3.5                                                                            | Cole H<br>Left<br>41<br>0.22<br>19.3                                                                                 | larbour<br>WB<br>Thru<br>414<br>0.7<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Road<br>Right<br>132<br>79<br>8.8                                                                                                                     | Cumb<br>Left<br>133<br>0.33<br>16.9                                                                                      | oerland<br>NB<br>Thru<br>186<br>0.4<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Drive<br>Right<br>60<br>53<br>.5                                                                                                                                  | Fores                                                                                                                     | t Hills F<br>SB<br>Thru<br>261<br>0.42<br>24.0                                                                                           | Prkwy<br>Right<br>272<br>0.38<br>4.2                                                                                                                                           |
| 2024<br>Existing<br>Volumes                                                              | Vol veh/hr<br>V/C Ratio<br>Delay sec/veh<br>LOS                                                                                                                             | Cole F<br>Left<br>224<br>0.70<br>30.1<br>C                                                                                 | larbour<br>EB<br>Thru<br>652<br>0.<br>28<br>(0)                                                                                                                                                                                                                                                                                                                            | Road<br>Right<br>121<br>70<br>3.5                                                                            | Cole F<br>Left<br>41<br>0.22<br>19.3<br>B                                                                            | larbour<br>WB<br>Thru<br>414<br>0.<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Road<br>Right<br>132<br>79<br>8.8                                                                                                                     | Cumb<br>Left<br>133<br>0.33<br>16.9<br>B                                                                                 | oerland<br>NB<br>Thru<br>186<br>0.9<br>31<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Right<br>60<br>53<br>.5                                                                                                                                           | Fores Left 298 0.63 20.6 C                                                                                                | t Hills F<br>SB<br>Thru<br>261<br>0.42<br>24.0<br>C                                                                                      | Right           272           0.38           4.2           A                                                                                                                   |
| 2024<br>Existing<br>Volumes                                                              | Vol veh/hr<br>V/C Ratio<br>Delay sec/veh<br>LOS<br>95% Q m                                                                                                                  | Cole F<br>Left<br>224<br>0.70<br>30.1<br>C<br>48.3                                                                         | larbour<br>EB<br>Thru<br>652<br>0.<br>28<br>(0<br>87                                                                                                                                                                                                                                                                                                                       | <b>Road</b><br><b>Right</b><br>121<br>70<br>3.5<br>7.5                                                       | Cole F<br>Left<br>41<br>0.22<br>19.3<br>B<br>10.7                                                                    | larbour<br>WB<br>Thru<br>414<br>0.1<br>38<br>[<br>64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Road<br>Right<br>132<br>79<br>3.8<br>0<br>1.9                                                                                                         | Cumb<br>Left<br>133<br>0.33<br>16.9<br>B<br>24.5                                                                         | erland<br>NB<br>Thru<br>186<br>0.9<br>31<br>(<br>63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Drive           Right           60           53           .5           .7                                                                                         | Fores<br>Left<br>298<br>0.63<br>20.6<br>C<br>53.8                                                                         | t Hills F<br>SB<br>Thru<br>261<br>0.42<br>24.0<br>C<br>58.6                                                                              | Right           272           0.38           4.2           A           15.9                                                                                                    |
| nd Existing<br>Volumes                                                                   | Vol veh/hr<br>V/C Ratio<br>Delay sec/veh<br>LOS<br>95% Q m<br>Vol veh/hr                                                                                                    | Cole F<br>Left<br>224<br>0.70<br>30.1<br>C<br>48.3<br>273                                                                  | larbour<br>EB<br>Thru<br>652<br>0.<br>28<br>(<br>87<br>795                                                                                                                                                                                                                                                                                                                 | Road<br>Right<br>121<br>70<br>3.5<br>7.5<br>145                                                              | Cole H<br>Left<br>41<br>0.22<br>19.3<br>B<br>10.7<br>50                                                              | Harbour<br>WB<br>Thru<br>414<br>0.7<br>38<br>64<br>505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Road<br>Right<br>132<br>79<br>3.8<br>0<br>4.9<br>158                                                                                                  | Cumb<br>Left<br>133<br>0.33<br>16.9<br>B<br>24.5<br>162                                                                  | Derland<br>NB<br>Thru<br>186<br>0.9<br>31<br>(<br>63<br>227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Drive           Right           60           53           .5           .7           72                                                                            | Fores<br>Left<br>298<br>0.63<br>20.6<br>C<br>53.8<br>363                                                                  | t Hills F<br>SB<br>Thru<br>261<br>0.42<br>24.0<br>C<br>58.6<br>318                                                                       | Right           272           0.38           4.2           A           15.9           332                                                                                      |
| 34 2024<br>ound Existing<br>ffic Volumes                                                 | Vol veh/hr<br>V/C Ratio<br>Delay sec/veh<br>LOS<br>95% Q m<br>Vol veh/hr<br>V/C Ratio                                                                                       | Cole F<br>Left<br>224<br>0.70<br>30.1<br>C<br>48.3<br>273<br>0.85                                                          | larbour<br>EB<br>Thru<br>652<br>0.<br>28<br>(<br>87<br>795<br>0.1                                                                                                                                                                                                                                                                                                          | Road<br>Right<br>121<br>70<br>3.5<br>7.5<br>145<br>86                                                        | Cole F<br>Left<br>41<br>0.22<br>19.3<br>B<br>10.7<br>50<br>0.30                                                      | Harbour<br>WB<br>Thru<br>414<br>0.7<br>38<br>[<br>64<br>505<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Road<br>Right<br>132<br>79<br>8.8<br>0<br>.9<br>158<br>91                                                                                             | Cumb<br>Left<br>133<br>0.33<br>16.9<br>B<br>24.5<br>162<br>0.45                                                          | verland<br>NB<br>Thru<br>186<br>0.3<br>31<br>(<br>63<br>227<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Right         60           53         5           72         72                                                                                                   | Fores<br>298<br>0.63<br>20.6<br>C<br>53.8<br>363<br>0.85                                                                  | t Hills F<br>SB<br>Thru<br>261<br>0.42<br>24.0<br>C<br>58.6<br>318<br>0.52                                                               | Right           272           0.38           4.2           A           15.9           332           0.45                                                                       |
| 2034 2024 kground Existing Volumes                                                       | Vol veh/hr<br>V/C Ratio<br>Delay sec/veh<br>LOS<br>95% Q m<br>Vol veh/hr<br>V/C Ratio<br>Delay sec/veh                                                                      | Cole F<br>Left<br>224<br>0.70<br>30.1<br>C<br>48.3<br>273<br>0.85<br>44.6                                                  | larbour<br>EB<br>Thru<br>652<br>0.1<br>28<br>(<br>87<br>795<br>0.3<br>30<br>6<br>30<br>6<br>30<br>6<br>30<br>6<br>30<br>6<br>30<br>6<br>30<br>7<br>9<br>5<br>0.3<br>30<br>7<br>9<br>5<br>0.3<br>30<br>7<br>9<br>5<br>0.3<br>30<br>7<br>9<br>5<br>2<br>8<br>7<br>7<br>9<br>5<br>8<br>7<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7 | Road<br>Right<br>121<br>70<br>8.5<br>7.5<br>145<br>86<br>6.7                                                 | Cole H<br>Left<br>41<br>0.22<br>19.3<br>8<br>10.7<br>50<br>0.30<br>21.1                                              | Harbour<br>WB<br>Thru<br>414<br>0.1<br>38<br>[<br>64<br>505<br>0.5<br>0.5<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Road<br>Right<br>132<br>79<br>8.8<br>0<br>158<br>91<br>3.7                                                                                            | Cumb<br>Left<br>133<br>0.33<br>16.9<br>B<br>24.5<br>162<br>0.45<br>20.2                                                  | verland<br>NB<br>Thru<br>186<br>0.9<br>31<br>(<br>63<br>227<br>0.1<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Right         60           53         5           72         72           72         8                                                                            | Fores<br>298<br>0.63<br>20.6<br>C<br>53.8<br>363<br>0.85<br>36.2                                                          | t Hills F<br>SB<br>Thru<br>261<br>0.42<br>24.0<br>C<br>58.6<br>318<br>0.52<br>26.6                                                       | Right           272           0.38           4.2           A           15.9           332           0.45           4.3                                                         |
| 2034 2024<br>3ackground Existing<br>Traffic Volumes                                      | Vol veh/hr<br>V/C Ratio<br>Delay sec/veh<br>LOS<br>95% Q m<br>Vol veh/hr<br>V/C Ratio<br>Delay sec/veh<br>LOS                                                               | Cole F<br>Left<br>224<br>0.70<br>30.1<br>C<br>48.3<br>273<br>0.85<br>44.6<br>D                                             | larbour<br>EB<br>Thru<br>652<br>0.1<br>28<br>(<br>0.2<br>87<br>795<br>0.3<br>6<br>36<br>(<br>10<br>2<br>10<br>2<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                              | Road<br>Right<br>121<br>70<br>8.5<br>7.5<br>145<br>86<br>5.7<br>0                                            | Cole H<br>Left<br>41<br>0.22<br>19.3<br>B<br>10.7<br>50<br>0.30<br>21.1<br>C                                         | Harbour<br>WB<br>Thru<br>414<br>0.1<br>388<br>[<br>64<br>505<br>0.9<br>488<br>[<br>0.9<br>202<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Road<br>Right<br>132<br>79<br>8.8<br>0<br>1.9<br>158<br>91<br>3.7<br>0<br>0                                                                           | Cumb<br>Left<br>133<br>0.33<br>16.9<br>B<br>24.5<br>162<br>0.45<br>20.2<br>C<br>C                                        | Perland<br>NB<br>Thru<br>186<br>0.9<br>31<br>(0<br>63<br>227<br>0.1<br>40<br>(0<br>227<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>0.1<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>227)<br>(0<br>27)<br>(0<br>27)<br>(0<br>27)<br>(0<br>27)<br>(0<br>27)<br>(0<br>27)<br>(0<br>27)<br>(0<br>27)<br>(0<br>27)<br>(0<br>27)<br>(0<br>27)<br>(0<br>27)<br>(0<br>(0<br>27))<br>(0<br>27)<br>(0<br>(0<br>27))<br>(0<br>(0<br>27))<br>(0<br>(0<br>(0<br>(0<br>(0<br>(0<br>(0<br>(0<br>(0<br>(0<br>(0<br>(0<br>(0 | Right           60           53           .5           .7           72           72           .8           0                                                      | Fores<br>298<br>0.63<br>20.6<br>C<br>53.8<br>363<br>0.85<br>36.2<br>D                                                     | t Hills F<br>SB<br>Thru<br>261<br>0.42<br>24.0<br>C<br>58.6<br>318<br>0.52<br>26.6<br>C<br>C                                             | Right           272           0.38           4.2           A           15.9           332           0.45           4.4           A           4.7                               |
| 2034 2024<br>Background Existing<br>t Traffic Volumes                                    | Vol veh/hr<br>V/C Ratio<br>Delay sec/veh<br>LOS<br>95% Q m<br>Vol veh/hr<br>V/C Ratio<br>Delay sec/veh<br>LOS<br>95% Q m                                                    | Cole F<br>Left<br>224<br>0.70<br>30.1<br>C<br>48.3<br>273<br>0.85<br>44.6<br>D<br>777.3<br>272                             | larbour<br>EB<br>Thru<br>652<br>0.<br>28<br>(<br>0.<br>87<br>795<br>0.3<br>6                                                                                                                                                                                                                                                                                               | Road<br>Right<br>121<br>70<br>3.5<br>7.5<br>145<br>86<br>5.7<br>0<br>4.7                                     | Cole H<br>Left<br>41<br>0.22<br>19.3<br>B<br>10.7<br>50<br>0.30<br>21.1<br>C<br>12.1                                 | larbour<br>WB<br>Thru<br>414<br>0.7<br>38<br>64<br>505<br>0.9<br>505<br>0.9<br>2<br>2<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Road<br>Right<br>132<br>79<br>8.8<br>9<br>1.9<br>158<br>91<br>3.7<br>0<br>2.9<br>150                                                                  | Cumb<br>Left<br>133<br>0.33<br>16.9<br>B<br>24.5<br>162<br>0.45<br>20.2<br>C<br>29.2<br>476                              | verland<br>NB<br>Thru<br>186<br>0.3<br>31<br>(0<br>63<br>227<br>0.7<br>40<br>(1)<br>40<br>(1)<br>87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Drive           Right           60           53           .5           .7           72           .8           .0           .74                                    | Fores<br>298<br>0.63<br>20.6<br>C<br>53.8<br>363<br>0.85<br>36.2<br>D<br>88.1                                             | t Hills F<br>SB<br>Thru<br>261<br>0.42<br>24.0<br>C<br>58.6<br>318<br>0.52<br>26.6<br>C<br>72.5<br>235                                   | Right           272           0.38           4.2           A           15.9           332           0.45           4.4           A           17.3                              |
| and Background Existing Volumes                                                          | Vol veh/hr<br>V/C Ratio<br>Delay sec/veh<br>LOS<br>95% Q m<br>Vol veh/hr<br>V/C Ratio<br>Delay sec/veh<br>LOS<br>95% Q m<br>Vol veh/hr                                      | Cole F<br>Left<br>224<br>0.70<br>30.1<br>C<br>48.3<br>273<br>0.85<br>44.6<br>D<br>77.3<br>273<br>0.95                      | larbour<br>EB<br>Thru<br>652<br>0.1<br>28<br>(<br>0.2<br>87<br>795<br>0.1<br>36<br>(<br>12<br>795                                                                                                                                                                                                                                                                          | Right<br>121<br>70<br>3.5<br>7.5<br>145<br>86<br>5.7<br>0<br>4.7<br>159                                      | Cole F<br>41<br>0.22<br>19.3<br>B<br>10.7<br>50<br>0.30<br>21.1<br>C<br>12.1<br>55<br>0.22                           | Harbour<br>WB<br>Thru<br>414<br>0.7<br>38<br>64<br>505<br>0.9<br>505<br>0.9<br>2<br>92<br>505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Road<br>Right<br>132<br>79<br>3.8<br>.9<br>158<br>91<br>.9<br>.9<br>.9<br>.9<br>.9<br>.9<br>.9<br>.9<br>.9<br>.9                                      | Cumb<br>Left<br>133<br>0.33<br>16.9<br>B<br>24.5<br>162<br>0.45<br>20.2<br>C<br>29.2<br>176<br>0.51                      | verland<br>NB<br>Thru<br>186<br>0.3<br>31<br>(<br>63<br>32<br>227<br>0.7<br>40<br>(<br>87<br>238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Drive           Right           60           53           .5           .7           72           72           .8           0           .74                        | Fores<br>298<br>0.63<br>20.6<br>C<br>53.8<br>363<br>0.85<br>36.2<br>D<br>88.1<br>363<br>0.99                              | t Hills F<br>SB<br>7hru<br>261<br>0.42<br>24.0<br>C<br>58.6<br>318<br>0.52<br>26.6<br>C<br>72.5<br>335<br>0.55                           | Right           272           0.38           4.2           A           15.9           332           0.45           4.4           A           17.3           332           0.45 |
| 34 2034 2024<br>round Background Existing<br>pment Traffic Volumes                       | Vol veh/hr<br>V/C Ratio<br>Delay sec/veh<br>LOS<br>95% Q m<br>Vol veh/hr<br>V/C Ratio<br>Delay sec/veh<br>LOS<br>95% Q m<br>Vol veh/hr<br>V/C Ratio<br>Dolay sec/veh        | Cole F<br>Left<br>224<br>0.70<br>30.1<br>C<br>48.3<br>273<br>0.85<br>44.6<br>D<br>77.3<br>273<br>0.85<br>44.7              | larbour<br>EB<br>Thru<br>652<br>0.7<br>28<br>(<br>28<br>(<br>795<br>0.3<br>36<br>21<br>2<br>795<br>0.3<br>25<br>0.3<br>25<br>0.3<br>25<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                       | Road<br>Right<br>121<br>70<br>8.5<br>7.5<br>145<br>86<br>5.7<br>0<br>4.7<br>159<br>88                        | Cole H<br>41<br>0.22<br>19.3<br>B<br>10.7<br>50<br>0.30<br>21.1<br>C<br>12.1<br>55<br>0.33<br>21.2                   | Harbour<br>WB<br>Thru<br>414<br>0.7<br>38<br>64<br>505<br>0.9<br>48<br>0.9<br>2<br>505<br>0.9<br>2<br>505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Road<br>Right<br>132<br>79<br>8.8<br>0<br>158<br>91<br>2.9<br>158<br>91<br>2.7<br>2.9<br>158<br>91<br>2.7                                             | Cumb<br>Left<br>133<br>0.33<br>16.9<br>B<br>24.5<br>162<br>0.45<br>20.2<br>C<br>29.2<br>176<br>0.51<br>21.7              | verland<br>NB<br>Thru<br>186<br>0.3<br>31<br>(<br>63<br>227<br>0.7<br>40<br>(<br>87<br>238<br>238<br>0.7<br>238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Right           60           53           .5           .7           72           .8           .0           .74                                                    | Fores<br>298<br>0.63<br>20.6<br>C<br>53.8<br>363<br>0.85<br>36.2<br>D<br>88.1<br>363<br>0.88<br>40.1                      | t Hills F<br>SB<br>7hru<br>261<br>0.42<br>24.0<br>C<br>58.6<br>318<br>0.52<br>26.6<br>C<br>72.5<br>335<br>0.55<br>27.2                   | Right         272         0.38         4.2         A         15.9         332         0.45         4.4         A         17.3         332         0.45         4.5             |
| 2034 2034 2024 ckground Background Existing elopment Traffic Volumes                     | Vol veh/hr<br>V/C Ratio<br>Delay sec/veh<br>LOS<br>95% Q m<br>Vol veh/hr<br>V/C Ratio<br>Delay sec/veh<br>LOS<br>95% Q m<br>Vol veh/hr<br>V/C Ratio<br>Delay sec/veh        | Cole F<br>Left<br>224<br>0.70<br>30.1<br>C<br>48.3<br>273<br>0.85<br>44.6<br>D<br>77.3<br>273<br>0.85<br>44.7              | larbour<br>EB<br>Thru<br>652<br>0.<br>28<br>(<br>28<br>(<br>87<br>795<br>0.3<br>6<br>(<br>12<br>795<br>0.3<br>8<br>(<br>12<br>795<br>0.3<br>8<br>(<br>12<br>795<br>0.3<br>8<br>(<br>12<br>795<br>0.3<br>8<br>(<br>12<br>795<br>0.3<br>8<br>(<br>12<br>795)<br>0.3<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                            | Road<br>Right<br>121<br>70<br>8.5<br>7.5<br>145<br>86<br>5.7<br>0<br>4.7<br>159<br>88<br>88<br>8.4           | Cole H<br>41<br>0.22<br>19.3<br>B<br>10.7<br>50<br>0.30<br>21.1<br>C<br>12.1<br>55<br>0.33<br>21.8<br>C              | Harbour<br>WB<br>Thru<br>414<br>0.7<br>38<br>28<br>505<br>0.9<br>205<br>505<br>0.9<br>205<br>0.9<br>205<br>0.9<br>205<br>0.9<br>205<br>0.9<br>205<br>0.9<br>205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Road<br>Right<br>132<br>79<br>8.8<br>0<br>158<br>91<br>8.7<br>0<br>91<br>8.7<br>0<br>91<br>91<br>91<br>91<br>91<br>91<br>91<br>91<br>91<br>91         | Cumb<br>Left<br>133<br>0.33<br>16.9<br>B<br>24.5<br>162<br>0.45<br>20.2<br>C<br>29.2<br>176<br>0.51<br>21.7              | verland<br>NB<br>Thru<br>186<br>0.3<br>31<br>(<br>63<br>227<br>0.7<br>227<br>0.7<br>40<br>227<br>238<br>0.7<br>238<br>0.7<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Right           60           53           .5           .7           72           .8           0           .0           74           76           .3               | Fores<br>298<br>0.63<br>20.6<br>C<br>53.8<br>363<br>0.85<br>36.2<br>D<br>88.1<br>363<br>0.88<br>40.1                      | t Hills F<br>SB<br>Thru<br>261<br>0.42<br>24.0<br>C<br>58.6<br>318<br>0.52<br>26.6<br>C<br>72.5<br>335<br>0.55<br>27.2                   | Right         272         0.38         4.2         A         15.9         332         0.45         4.4         A         17.3         332         0.45         4.5             |
| 2034 2034 2024 2024 Background Background Existing Volumes                               | Vol veh/hr<br>V/C Ratio<br>Delay sec/veh<br>LOS<br>95% Q m<br>Vol veh/hr<br>V/C Ratio<br>Delay sec/veh<br>LOS<br>95% Q m<br>Vol veh/hr<br>V/C Ratio<br>Delay sec/veh<br>LOS | Cole F<br>Left<br>224<br>0.70<br>30.1<br>C<br>48.3<br>273<br>0.85<br>44.6<br>D<br>77.3<br>273<br>0.85<br>44.7<br>D<br>77.1 | larbour<br>EB<br>Thru<br>652<br>0.<br>28<br>0.<br>28<br>0.<br>37<br>795<br>0.<br>36<br>[<br>12<br>795<br>0.<br>38<br>0.<br>38<br>[<br>12]                                                                                                                                                                                                                                  | Road<br>Right<br>121<br>70<br>3.5<br>7.5<br>145<br>86<br>5.7<br>0<br>4.7<br>159<br>88<br>88<br>8.4<br>0<br>0 | Cole H<br>41<br>0.22<br>19.3<br>B<br>10.7<br>50<br>0.30<br>21.1<br>C<br>12.1<br>55<br>0.33<br>21.8<br>C<br>C<br>12.2 | Harbour<br>WB<br>Thru<br>414<br>0.1<br>388<br>[<br>64<br>505<br>0.9<br>505<br>0.9<br>505<br>0.9<br>505<br>0.9<br>488<br>[<br>92<br>505<br>0.9<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>505<br>0.9<br>2<br>0<br>0.9<br>2<br>0<br>0.9<br>2<br>0<br>0<br>0.9<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Road<br>Right<br>132<br>79<br>8.8<br>9<br>158<br>91<br>.9<br>158<br>91<br>.9<br>158<br>91<br>.9<br>.9<br>.9<br>.9<br>.9<br>.9<br>.9<br>.9<br>.9<br>.9 | Cumb<br>Left<br>133<br>0.33<br>16.9<br>B<br>24.5<br>162<br>0.45<br>20.2<br>C<br>29.2<br>176<br>0.51<br>21.7<br>C<br>21.5 | Perland<br>NB<br>Thru<br>186<br>0.9<br>31<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>63<br>227<br>0.1<br>64<br>0.1<br>64<br>0.1<br>7<br>63<br>227<br>0.1<br>64<br>0.1<br>64<br>0.1<br>7<br>7<br>64<br>0.1<br>7<br>7<br>64<br>0.1<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Right           60           53           .5           .7           72           .8           0           .74           76           .3           .3           .3 | Fores<br>298<br>0.63<br>20.6<br>C<br>53.8<br>363<br>0.85<br>36.2<br>D<br>88.1<br>363<br>0.88<br>40.1<br>D<br>0.88<br>40.1 | t Hills F<br>SB<br>Thru<br>261<br>0.42<br>24.0<br>C<br>58.6<br>318<br>0.52<br>26.6<br>C<br>72.5<br>335<br>0.55<br>27.2<br>C<br>C<br>76.5 | Right         272         0.38         4.2         A         15.9         332         0.45         4.4         A         17.3         332         0.45         4.5         A   |

# 4.4 CUMBERLAND DRIVE AND NEW DRIVEWAY

The new driveway to the development operates with a single exit lane serving both left and right turning traffic. During both peak hours, volumes on Cumberland Drive are not high enough to create any significant delays for the driveway movements. Both peak operate with LOS B with average delays of less than 15 seconds.

Northbound movements on Cumberland are both free flow through and right turn movements which do not experience delays. This is further supported by the presence of two northbound lanes minimizing impacts to through movements at the driveway.

The so found left turn movements from Cumberland drive to the driveway our model from a single lane with volumes being low enough cell phone left turn operates with minimal delay. Post driveway is located to the South of an existing driveway to the commercial area on

the West side of Cumberland Dr. The arrangement of the offset eliminates conflicting left turn movements from each driveway and the open nature of the roadside environment provides for a good level of visibility in all directions.



The proposed location of the driveway suggests that the existing bus stop on the east side of Cumberland Drive may need to be relocated immediately to the north of the existing stop location. There appears to be adequate space for such a relocation with no roadside obstacles noted.



#### Sight Distances

The images below show the approximate site distances from the new proposed driveway and indicate that sight lines from the driveway are clear in both directions and required intersection and stopping sight distances can be met.



Sight lines from Driveway to the South

| N | I PEAK            | New D | riveway<br>EB | Cumb<br>N | erland<br>IB | Cumb<br>S | erland<br>B |
|---|-------------------|-------|---------------|-----------|--------------|-----------|-------------|
|   |                   | Left  | Right         | Left      | Thru         | Thru      | Right       |
|   | Vol <i>veh/hr</i> | 11    | 56            | 456       | 7            | 21        | 510         |
|   | V/C Ratio         | 0     | .14           | 0.19      | 0.10         | 0.0       | 02          |
|   | Delay sec/veh     | 1     | 3.2           | 0.0       | 0.0          | 0.        | .6          |
|   | LOS               |       | В             | А         | А            | ŀ         | Ą           |
|   | 95% Q m           | 00    | 3.8           | 0.0       | 0.0          | 0.        | .6          |

| M | I PEAK        | New D | riveway<br>EB | Cumb<br>N | erland<br>IB | Cumbo<br>S | erland<br>B |
|---|---------------|-------|---------------|-----------|--------------|------------|-------------|
|   |               | Left  | Right         | Left      | Thru         | Thru       | Right       |
| - | Vol veh/hr    | 9     | 33            | 456       | 11           | 50         | 510         |
|   | V/C Ratio     | 0     | .11           | 0.19      | 0.10         | 0.0        | 05          |
| ) | Delay sec/veh | 1     | 4.6           | 0.0       | 0.0          | 1.         | .4          |
|   | LOS           |       | В             | А         | А            | A          | Ą           |
| í | 95% Q m       | 2     | 2.8           | 0.0       | 0.0          | 1.         | .2          |



Sight lines from Driveway to the North

# 5. CONCLUSIONS

This study addresses the proposed development at 10 Cumberland Drive that includes a new multi-unit residential building with about 146 units. The new Building is adjacent to an existing multi unit building and the proposed development includes the reconfiguration of an existing lower parking lot to include additional spaces, and a new upper parking lot with access to underground and surface parking. The development will be serviced buy a new two lane driveway connecting to Cumberland Drive about 120 meters south of Cole Harbour Road.

The study shows that the development is located in close proximity to a variety of significant active transportation routes, including adjacent sidewalks, and is directly adjacent to numerous transit routes that connect directly to the Portland hills transit terminal. This development is well positioned to direct residence towards these alternate travel modes helping reduce reliance on passenger cars.

Volumes generated by the new development represent less than 2% of the total traffic through the Cole Harbour Road intersection with Cumberland Drive and the Forest Hills Parkway. Impacts to intersection operations are therefore negligible. The analysis also shows that the new driveway to Cumberland Drive operates at very good levels of service with minimal delay or queuing.

The location of the new driveway can be accommodated with good site distances in all directions and does not require upgrades to Cumberland Drive. Similarly, the relatively low volumes through the Cole Harbour Road intersection indicate that no upgrades are required to accommodate this development.



# APPENDIX A

# Appendix A: TRAFFIC COUNTS

Transportation Impact Study

Wed Feb 28, 2024

Full Length (7 AM-9 AM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians)

All Movements

ID: 1160885, Location: 44.671623, -63.490065



Provided by: Trans4m Development Group 59 Craigburn Drive, Dartmouth, NS, B2X 3E6, CA

| Leg                                  | Cole H | arbour | Rd EB |             |               |      | Cole H | arbour | Rd WB |      |                       |      | Cumber  | rland D | r NB  |             |                |      | Forest | Hills P | rkwy SI | 3    |                     |      |              |
|--------------------------------------|--------|--------|-------|-------------|---------------|------|--------|--------|-------|------|-----------------------|------|---------|---------|-------|-------------|----------------|------|--------|---------|---------|------|---------------------|------|--------------|
| Direction                            | Eastbo | und    |       |             |               |      | Westbo | und    |       |      |                       |      | Northbo | ound    |       |             |                |      | Southb | ound    |         |      |                     |      |              |
| Time                                 | L      | Т      | R     | U           | <b>A</b> pp   | Ped* | L      | Т      | R     | U    | Арр                   | Ped* | L       | Т       | R     | U           | <b>Ар</b> р    | Ped* | L      | Т       | R       | U    | Арр                 | Ped* | Int          |
| 2024-02-28<br>7:00AM                 | 18     | 24     | 4     | 0           | 46            | 2    | 7      | 146    | 41    | 0    | 1 <b>9</b> 4          | 0    | 21      | 41      | 6     | 0           | 68             | 0    | 13     | 13      | 45      | 0    | 71                  | 0    | <b>37</b> 9  |
| 7:15AM                               | 29     | 27     | 6     | 0           | 62            | 2    | 9      | 149    | 50    | 0    | 2 <b>0</b> 8          | 1    | 32      | 53      | 4     | 0           | 89             | 0    | 11     | 11      | 56      | 0    | 78                  | 0    | <b>43</b> 7  |
| 7:30AM                               | 31     | 40     | 3     | 0           | 74            | 1    | 11     | 188    | 66    | 0    | 2 <b>6</b> 5          | 2    | 37      | 49      | 5     | 0           | 91             | 0    | 17     | 19      | 69      | 0    | 105                 | 0    | <b>53</b> 5  |
| 7:45AM                               | 28     | 55     | 6     | 0           | 89            | 1    | 12     | 176    | 78    | 0    | 2 <b>6</b> 6          | 5    | 29      | 46      | 10    | 0           | 85             | 0    | 42     | 23      | 83      | 0    | <b>148</b>          | 7    | <b>58</b> 8  |
| Hourly Total                         | 106    | 146    | 19    | 0           | 271           | 6    | 39     | 659    | 235   | 0    | 9 <b>3</b> 3          | 8    | 119     | 189     | 25    | 0           | 333            | 0    | 83     | 66      | 253     | 0    | <b>4</b> 0 <b>2</b> | 7    | <b>193</b> 9 |
| 8:00AM                               | 39     | 54     | 18    | 0           | 111           | 0    | 12     | 172    | 58    | 0    | 2 <b>4</b> 2          | 2    | 36      | 48      | 11    | 0           | 95             | 0    | 37     | 28      | 48      | 0    | <b>1</b> 1 <b>3</b> | 2    | <b>56</b> 1  |
| 8:15AM                               | 27     | 54     | 13    | 0           | 94            | 2    | 16     | 177    | 49    | 0    | 2 <b>4</b> 2          | 3    | 43      | 59      | 11    | 0           | 113            | 2    | 35     | 28      | 62      | 0    | 125                 | 3    | 574          |
| 8:30AM                               | 24     | 60     | 10    | 0           | 94            | 1    | 10     | 160    | 51    | 0    | 2 <b>2</b> 1          | 1    | 58      | 57      | 16    | 0           | 131            | 0    | 40     | 32      | 71      | 0    | 143                 | 2    | <b>58</b> 9  |
| 8:45AM                               | 40     | 60     | 19    | 0           | 119           | 1    | 8      | 119    | 41    | 0    | 1 <b>6</b> 8          | 0    | 42      | 32      | 11    | 0           | 85             | 0    | 31     | 25      | 50      | 0    | 106                 | 2    | <b>47</b> 8  |
| Hourly Total                         | 130    | 228    | 60    | 0           | 418           | 4    | 46     | 628    | 199   | 0    | 8 <b>7</b> 3          | 6    | 179     | 196     | 49    | 0           | 424            | 2    | 143    | 113     | 231     | 0    | <b>4</b> 8 <b>7</b> | 9    | <b>220</b> 2 |
| Total                                | 236    | 374    | 79    | 0           | 689           | 10   | 85     | 1287   | 434   | 0    | <b>180</b> 6          | 14   | 298     | 385     | 74    | 0           | 757            | 2    | 226    | 179     | 484     | 0    | <b>8</b> 89         | 16   | <b>414</b> 1 |
| % Approach                           | 34.3%  | 54.3%  | 11.5% | 0%          | -             | -    | 4.7%   | 71.3%  | 24.0% | 0%   | -                     | -    | 39.4%   | 50.9%   | 9.8%  | 0%          | -              | -    | 25.4%  | 20.1%   | 54.4%   | 0%   | -                   | -    | -            |
| % Total                              | 5.7%   | 9.0%   | 1.9%  | <b>0%</b> : | <b>16.6</b> % | -    | 2.1%   | 31.1%  | 10.5% | 0%   | <b>4</b> 3. <b>6%</b> | -    | 7.2%    | 9.3%    | 1.8%  | <b>0%</b> : | 1 <b>8.</b> 3% | -    | 5.5%   | 4.3%    | 11.7%   | 0%:  | 21.5%               | -    | -            |
| Lights                               | 219    | 360    | 77    | 0           | 656           | -    | 84     | 1269   | 417   | 0    | 17 <b>7</b> 0         | -    | 289     | 381     | 72    | 0           | 742            | -    | 219    | 170     | 453     | 0    | <b>842</b>          | -    | 4010         |
| % Lights                             | 92.8%  | 96.3%  | 97.5% | 0% 9        | <b>95.2</b> % | -    | 98.8%  | 98.6%  | 96.1% | 0% 9 | <b>98.0%</b>          | -    | 97.0%   | 99.0%   | 97.3% | 0% 9        | 9 <b>8.0%</b>  | -    | 96.9%  | 95.0%   | 93.6%   | 0% 9 | 94.7%               | -    | 96.8%        |
| Articulated<br>Trucks                | 3      | 0      | 0     | 0           | 3             | -    | 0      | 1      | 0     | 0    | 1                     | -    | 0       | 1       | 0     | 0           | 1              | -    | 0      | 1       | 4       | 0    | 5                   | -    | 10           |
| % Articulated<br>Trucks              | 1.3%   | 0%     | 0%    | 0%          | <b>0.4</b> %  | -    | 0%     | 0.1%   | 0%    | 0%   | 0. <b>1%</b>          | -    | 0%      | 0.3%    | 0%    | 0%          | <b>0.1%</b>    | -    | 0%     | 0.6%    | 0.8%    | 0%   | 0.6%                | -    | 0.2%         |
| Buses and<br>Single-Unit<br>Trucks   | 14     | 14     | 2     | 0           | 30            | -    | 1      | 17     | 17    | 0    | <b>3</b> 5            | -    | 9       | 3       | 2     | 0           | 14             | -    | 7      | 8       | 27      | 0    | 42                  | -    | 121          |
| % Buses and<br>Single-Unit<br>Trucks | 5.9%   | 3.7%   | 2.5%  | 0%          | <b>4.4</b> %  | -    | 1.2%   | 1.3%   | 3.9%  | 0%   | 1 <b>.9%</b>          | -    | 3.0%    | 0.8%    | 2.7%  | 0%          | <b>1.8%</b>    | -    | 3.1%   | 4.5%    | 5.6%    | 0%   | 4.7%                | -    | 2.9%         |
| Pedestrians                          | -      | -      | -     | -           | -             | 10   | -      | -      | -     | -    | -                     | 14   | -       | -       | -     | -           | -              | 2    | -      | -       | -       | -    | -                   | 16   |              |
| % Pedestrians                        | -      | -      | -     | -           | -             | 100% | -      | -      | -     | -    | -                     | 100% | -       | -       | -     | -           | -              | 100% | -      | -       | -       | -    | -                   | 100% | -            |

\*Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Wed Feb 28, 2024 Full Length (7 AM-9 AM) All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians) All Movements ID: 1160885, Location: 44.671623, -63.490065



Provided by: Trans4m Development Group 59 Craigburn Drive, Dartmouth, NS, B2X 3E6, CA



[S] Cumberland Dr NB

Wed Feb 28, 2024

AM Peak (7:45 AM - 8:45 AM) - Overall Peak Hour

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians)

All Movements

ID: 1160885, Location: 44.671623, -63.490065



Provided by: Trans4m Development Group 59 Craigburn Drive, Dartmouth, NS, B2X 3E6, CA

| Leg                                  | Cole H | arbour | Rd EB |    |                |      | Cole H | arbour | Rd WB |                   |               |      | Cumbe  | rland D | r NB  |    |               |      | Forest | Hills Pı | kwy Sl | в   |             |      |              |
|--------------------------------------|--------|--------|-------|----|----------------|------|--------|--------|-------|-------------------|---------------|------|--------|---------|-------|----|---------------|------|--------|----------|--------|-----|-------------|------|--------------|
| Direction                            | Eastbo | und    |       |    |                |      | Westbo | ound   |       |                   |               |      | Northb | ound    |       |    |               |      | Southb | ound     |        |     |             |      |              |
| Time                                 | L      | Т      | R     | U  | <b>A</b> pp    | Ped* | L      | Т      | R     | U                 | Арр           | Ped* | L      | Т       | R     | U  | <b>Ар</b> р   | Ped* | L      | Т        | R      | U   | Арр         | Ped* | Int          |
| 2024-02-28<br>7:45AM                 | 28     | 55     | 6     | 0  | 89             | 1    | 12     | 176    | 78    | 0                 | 2 <b>6</b> 6  | 5    | 29     | 46      | 10    | 0  | 85            | 0    | 42     | 23       | 83     | 0   | 148         | 7    | <b>58</b> 8  |
| 8:00AM                               | 39     | 54     | 18    | 0  | 111            | 0    | 12     | 172    | 58    | 0                 | 242           | 2    | 36     | 48      | 11    | 0  | 95            | 0    | 37     | 28       | 48     | 0   | 113         | 2    | <b>56</b> 1  |
| 8:15AM                               | 27     | 54     | 13    | 0  | 94             | 2    | 16     | 177    | 49    | 0                 | 242           | 3    | 43     | 59      | 11    | 0  | 113           | 2    | 35     | 28       | 62     | 0   | 125         | 3    | 574          |
| 8:30AM                               | 24     | 60     | 10    | 0  | 94             | 1    | 10     | 160    | 51    | 0                 | 2 <b>2</b> 1  | 1    | 58     | 57      | 16    | 0  | 131           | 0    | 40     | 32       | 71     | 0   | 143         | 2    | <b>58</b> 9  |
| Total                                | 118    | 223    | 47    | 0  | 388            | 4    | 50     | 685    | 236   | 0                 | 9 <b>7</b> 1  | 11   | 166    | 210     | 48    | 0  | 424           | 2    | 154    | 111      | 264    | 0   | 52 <b>9</b> | 14   | <b>23</b> 12 |
| % Approach                           | 30.4%  | 57.5%  | 12.1% | 0% | -              | -    | 5.1%   | 70.5%  | 24.3% | 0%                | -             | -    | 39.2%  | 49.5%   | 11.3% | 0% | -             | -    | 29.1%  | 21.0%    | 49.9%  | 0%  | -           | -    | -            |
| % Total                              | 5.1%   | 9.6%   | 2.0%  | 0% | 1 <b>6.8</b> % | -    | 2.2%   | 29.6%  | 10.2% | 0% 4              | 2 <b>.0%</b>  | -    | 7.2%   | 9.1%    | 2.1%  | 0% | 1 <b>8.3%</b> | -    | 6.7%   | 4.8%     | 11.4%  | 0%: | 22.9%       | -    | -            |
| PHF                                  | 0.756  | 0.929  | 0.653 | -  | 0.874          | -    | 0.781  | 0.968  | 0.756 | -                 | 0 <b>.913</b> | -    | 0.716  | 0.890   | 0.750 | -  | <b>0.80</b> 9 | -    | 0.917  | 0.867    | 0.795  | -   | 0.894       | -    | 0.981        |
| Lights                               | 111    | 214    | 45    | 0  | 370            | -    | 49     | 676    | 228   | 0                 | 9 <b>5</b> 3  | -    | 162    | 208     | 47    | 0  | 417           | -    | 149    | 105      | 249    | 0   | <b>503</b>  | -    | 2243         |
| % Lights                             | 94.1%  | 96.0%  | 95.7% | 0% | <b>95.4</b> %  | -    | 98.0%  | 98.7%  | 96.6% | 0% <mark>9</mark> | 98 <b>.1%</b> | -    | 97.6%  | 99.0%   | 97.9% | 0% | 9 <b>8.3%</b> | -    | 96.8%  | 94.6%    | 94.3%  | 0%  | 95.1%       | -    | 97.0%        |
| Articulated<br>Trucks                | 2      | 0      | 0     | 0  | 2              | -    | 0      | 0      | 0     | 0                 | 0             | -    | 0      | 1       | 0     | 0  | 1             | -    | 0      | 1        | 2      | 0   | 3           | -    | 6            |
| % Articulated<br>Trucks              | 1.7%   | 0%     | 0%    | 0% | 0.5%           | -    | 0%     | 0%     | 0%    | 0%                | 0 <b>%</b>    | -    | 0%     | 0.5%    | 0%    | 0% | <b>0.2%</b>   | -    | 0%     | 0.9%     | 0.8%   | 0%  | 0.6%        | -    | 0.3%         |
| Buses and<br>Single-Unit<br>Trucks   | 5      | 9      | 2     | 0  | 16             | -    | 1      | 9      | 8     | 0                 | 18            | -    | 4      | 1       | 1     | 0  | 6             | -    | 5      | 5        | 13     | 0   | 2 <b>3</b>  | -    | 63           |
| % Buses and<br>Single-Unit<br>Trucks | 4.2%   | 4.0%   | 4.3%  | 0% | <b>4.1</b> %   | -    | 2.0%   | 1.3%   | 3.4%  | 0%                | 1. <b>9%</b>  | -    | 2.4%   | 0.5%    | 2.1%  | 0% | 1.4%          | -    | 3.2%   | 4.5%     | 4.9%   | 0%  | 4.3%        | -    | 2.7%         |
| Pedestrians                          | -      | -      | -     | -  | -              | 4    | -      | -      | -     | -                 | -             | 11   | -      | -       | -     | -  | -             | 2    | -      | -        | -      | -   | -           | 14   |              |
| % Pedestrians                        | -      | -      | -     | -  | -              | 100% | -      | -      | -     | -                 | -             | 100% | -      | -       | -     | -  | -             | 100% | -      | -        | -      | -   | -           | 100% | -            |

\*Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Wed Feb 28, 2024 AM Peak (7:45 AM - 8:45 AM) - Overall Peak Hour All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians) All Movements



Provided by: Trans4m Development Group 59 Craigburn Drive, Dartmouth, NS, B2X 3E6, CA



Wed Feb 28, 2024

Full Length (4 PM-6 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians)

All Movements

ID: 1160886, Location: 44.671623, -63.490065



Provided by: Trans4m Development Group 59 Craigburn Drive, Dartmouth, NS, B2X 3E6, CA

| Leg<br>Direction                     | Cole H<br>Eastbo | arbour I<br>und | Rd EB |      |                |      | Cole Ha<br>Westbo | irbour 1<br>und | Rd WB |      |                       |      | Cumbe<br>Northb | rland D<br>ound | r NB  |             |               |      | Forest Southb | Hills Pr<br>ound | kwy SI | В   |                       |      |              |
|--------------------------------------|------------------|-----------------|-------|------|----------------|------|-------------------|-----------------|-------|------|-----------------------|------|-----------------|-----------------|-------|-------------|---------------|------|---------------|------------------|--------|-----|-----------------------|------|--------------|
| Time                                 | L                | Т               | R     | U    | <b>A</b> pp    | Ped* | L                 | Т               | R     | U    | Арр                   | Ped* | L               | Т               | R     | U           | <b>Ар</b> р   | Ped* | L             | Т                | R      | U   | Арр                   | Ped* | Int          |
| 2024-02-28<br>4:00PM                 | 61               | 138             | 15    | 0    | 214            | 3    | 21                | 93              | 53    | 0    | 1 <b>6</b> 7          | 0    | 38              | 38              | 16    | 0           | 92            | 2    | 70            | 47               | 66     | 0   | <b>183</b>            | 3    | <b>65</b> 6  |
| 4:15PM                               | 56               | 173             | 24    | 0    | 253            | 3    | 11                | 95              | 40    | 0    | 1 <b>4</b> 6          | 4    | 30              | 45              | 23    | 0           | <b>98</b>     | 1    | 71            | 68               | 63     | 0   | 202                   | 3    | <b>69</b> 9  |
| 4:30PM                               | 66               | 163             | 21    | 0    | 250            | 3    | 7                 | 99              | 29    | 0    | 1 <b>3</b> 5          | 1    | 31              | 48              | 24    | 0           | 103           | 1    | 71            | 64               | 67     | 0   | 202                   | 0    | <b>69</b> 0  |
| 4:45PM                               | 46               | 192             | 28    | 0    | 266            | 0    | 8                 | 127             | 37    | 0    | 1 <b>7</b> 2          | 1    | 25              | 37              | 16    | 0           | 78            | 0    | 71            | 59               | 52     | 0   | <b>182</b>            | 5    | <b>69</b> 8  |
| Hourly Total                         | 229              | 666             | 88    | 0    | <b>983</b>     | 9    | 47                | 414             | 159   | 0    | 6 <b>2</b> 0          | 6    | 124             | 168             | 79    | 0           | 371           | 4    | 283           | 238              | 248    | 0   | <b>769</b>            | 11   | <b>274</b> 3 |
| 5:00PM                               | 64               | 138             | 33    | 0    | 235            | 2    | 13                | 106             | 36    | 0    | 1 <b>5</b> 5          | 0    | 45              | 41              | 7     | 0           | 93            | 2    | 73            | 57               | 78     | 0   | <b>208</b>            | 3    | <b>69</b> 1  |
| 5:15PM                               | 48               | 159             | 39    | 0    | 246            | 4    | 13                | 82              | 30    | 0    | 1 <b>2</b> 5          | 6    | 32              | 60              | 13    | 0           | 105           | 3    | 83            | 81               | 75     | 0   | <b>2</b> 3 <b>9</b>   | 10   | <b>71</b> 5  |
| 5:30PM                               | 57               | 178             | 28    | 0    | 263            | 2    | 14                | 97              | 36    | 0    | 1 <b>4</b> 7          | 0    | 28              | 33              | 13    | 0           | 74            | 3    | 65            | 69               | 72     | 0   | <b>206</b>            | 0    | <b>69</b> 0  |
| 5:45PM                               | 63               | 143             | 23    | 0    | 229            | 0    | 5                 | <mark>98</mark> | 36    | 0    | 1 <b>3</b> 9          | 1    | 39              | 56              | 18    | 0           | 113           | 2    | 57            | 43               | 86     | 0   | <b>186</b>            | 1    | 667          |
| Hourly Total                         | 232              | 618             | 123   | 0    | 973            | 8    | 45                | 383             | 138   | 0    | 5 <b>6</b> 6          | 7    | 144             | 190             | 51    | 0           | 385           | 10   | 278           | 250              | 311    | 0   | <b>8</b> 3 <b>9</b>   | 14   | <b>276</b> 3 |
| Total                                | 461              | 1284            | 211   | 0    | 1956           | 17   | 92                | 797             | 297   | 0    | <b>1</b> 1 <b>8</b> 6 | 13   | 268             | 358             | 130   | 0           | 756           | 14   | 561           | 488              | 559    | 0   | 1 <b>6</b> 08         | 25   | <b>550</b> 6 |
| % Approach                           | 23.6%            | 65.6%           | 10.8% | 0%   | -              | -    | 7.8% 6            | 67.2%           | 25.0% | 0%   | -                     | -    | 35.4%           | 47.4%           | 17.2% | 0%          | -             | -    | 34.9%         | 30.3%            | 34.8%  | 0%  | -                     | -    | -            |
| % Total                              | 8.4%             | 23.3%           | 3.8%  | 0%:  | 35.5%          | -    | 1.7%              | 14.5%           | 5.4%  | 0%2  | 21.5%                 | -    | 4.9%            | 6.5%            | 2.4%  | <b>0%</b> : | 1 <b>3.7%</b> | -    | 10.2%         | 8.9%             | 10.2%  | 0%: | 29.2%                 | -    | -            |
| Lights                               | 446              | 1273            | 211   | 0    | 1930           | -    | 91                | 791             | 297   | 0    | <b>1</b> 1 <b>7</b> 9 | -    | 260             | 355             | 127   | 0           | 742           | -    | 559           | 488              | 550    | 0   | 1 <b>5</b> 9 <b>7</b> | -    | 5448         |
| % Lights                             | 96.7%            | 99.1%           | 100%  | 0% 9 | 9 <b>8.7</b> % | -    | 98.9% 9           | 9.2%            | 100%  | 0% 9 | 9. <b>4%</b>          | -    | 97.0%           | 99.2%           | 97.7% | 0%          | 9 <b>8.1%</b> | -    | 99.6%         | 100%             | 98.4%  | 0%  | 99.3%                 | -    | 98.9%        |
| Articulated<br>Trucks                | 0                | 0               | 0     | 0    | 0              | -    | 0                 | 0               | 0     | 0    | 0                     | -    | 0               | 1               | 0     | 0           | 1             | -    | 0             | 0                | 0      | 0   | 0                     | -    | 1            |
| % Articulated<br>Trucks              | 0%               | 0%              | 0%    | 0%   | 0%             | -    | 0%                | 0%              | 0%    | 0%   | 0 <b>%</b>            | -    | 0%              | 0.3%            | 0%    | 0%          | <b>0.1%</b>   | -    | 0%            | 0%               | 0%     | 0%  | <b>0</b> %            | -    | 0%           |
| Buses and<br>Single-Unit<br>Trucks   | 15               | 11              | 0     | 0    | 26             | -    | 1                 | 6               | 0     | 0    | 7                     | -    | 8               | 2               | 3     | 0           | 13            | -    | 2             | 0                | 9      | 0   | 11                    | -    | 57           |
| % Buses and<br>Single-Unit<br>Trucks | 3.3%             | 0.9%            | 0%    | 0%   | <b>1.3</b> %   | -    | 1.1%              | 0.8%            | 0%    | 0%   | 0 <b>.6%</b>          | -    | 3.0%            | 0.6%            | 2.3%  | 0%          | 1.7%          | -    | 0.4%          | 0%               | 1.6%   | 0%  | 0.7%                  | -    | 1.0%         |
| Pedestrians                          | -                | -               | -     | -    | -              | 17   | -                 | -               | -     | -    | -                     | 13   | -               | -               | -     | -           | -             | 14   | -             | -                | -      | -   | -                     | 25   |              |
| % Pedestrians                        | -                | -               | -     | -    | -              | 100% | -                 | -               | -     | -    | -                     | 100% | -               | -               | -     | -           | -             | 100% | -             | -                | -      | -   | -                     | 100% | -            |

\*Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Wed Feb 28, 2024 Full Length (4 PM-6 PM) All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians) All Movements ID: 1160886, Location: 44.671623, -63.490065



Provided by: Trans4m Development Group 59 Craigburn Drive, Dartmouth, NS, B2X 3E6, CA



[S] Cumberland Dr NB

Wed Feb 28, 2024 PM Peak (4:30 PM - 5:30 PM) - Overall Peak Hour All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians) All Movements ID: 1160886, Location: 44.671623, -63.490065



Provided by: Trans4m Development Group 59 Craigburn Drive, Dartmouth, NS, B2X 3E6, CA

| Leg                                  | Cole H | larbour | Rd EB |    |                     |      | Cole F | Iarbour | Rd WE | 3    |                   |      | Cumbe  | rland E | Dr NB |    |               |      | Forest | Hills Pı | kwy SI | В    |                       |      |              |
|--------------------------------------|--------|---------|-------|----|---------------------|------|--------|---------|-------|------|-------------------|------|--------|---------|-------|----|---------------|------|--------|----------|--------|------|-----------------------|------|--------------|
| Direction                            | Eastbo | und     |       |    |                     |      | Westb  | ound    |       |      |                   |      | Northb | ound    |       |    |               |      | Southb | ound     |        |      |                       |      |              |
| Time                                 | L      | Т       | R     | U  | Арр                 | Ped* | L      | Т       | R     | U    | <b>Ap</b> p       | Ped* | L      | Т       | R     | U  | Арр           | Ped* | L      | Т        | R      | U    | Ар <b>р</b>           | Ped* | Int          |
| 2024-02-28<br>4:30PM                 | 66     | 163     | 21    | 0  | <b>2</b> 50         | 3    | 7      | 99      | 29    | 0    | 135               | 1    | 31     | 48      | 24    | 0  | 103           | 1    | 71     | 64       | 67     | 0    | 2 <b>02</b>           | 0    | <b>69</b> 0  |
| 4:45PM                               | 46     | 192     | 28    | 0  | <b>2</b> 6 <b>6</b> | 0    | 8      | 127     | 37    | 0    | 172               | 1    | 25     | 37      | 16    | 0  | 78            | 0    | 71     | 59       | 52     | 0    | 1 <b>82</b>           | 5    | <b>69</b> 8  |
| 5:00PM                               | 64     | 138     | 33    | 0  | <b>2</b> 35         | 2    | 13     | 106     | 36    | 0    | <b>155</b>        | 0    | 45     | 41      | 7     | 0  | <b>93</b>     | 2    | 73     | 57       | 78     | 0    | 208                   | 3    | <b>69</b> 1  |
| 5:15PM                               | 48     | 159     | 39    | 0  | <b>246</b>          | 4    | 13     | 82      | 30    | 0    | 125               | 6    | 32     | 60      | 13    | 0  | <b>105</b>    | 3    | 83     | 81       | 75     | 0    | 2 <b>39</b>           | 10   | <b>71</b> 5  |
| Total                                | 224    | 652     | 121   | 0  | <b>9</b> 97         | 9    | 41     | 414     | 132   | 0    | <b>5</b> 87       | 8    | 133    | 186     | 60    | 0  | 379           | 6    | 298    | 261      | 272    | 0    | 8 <b>31</b>           | 18   | <b>279</b> 4 |
| % Approach                           | 22.5%  | 65.4%   | 12.1% | 0% | -                   | -    | 7.0%   | 70.5%   | 22.5% | 0%   | -                 | -    | 35.1%  | 49.1%   | 15.8% | 0% | -             | -    | 35.9%  | 31.4%    | 32.7%  | 0%   | -                     | -    | -            |
| % Total                              | 8.0%   | 23.3%   | 4.3%  | 0% | 35.7%               | -    | 1.5%   | 14.8%   | 4.7%  | 0%2  | 2 <b>1.0%</b>     | -    | 4.8%   | 6.7%    | 2.1%  | 0% | <b>13.6</b> % | -    | 10.7%  | 9.3%     | 9.7%   | 0%:  | 29 <b>.7%</b>         | -    | -            |
| PHF                                  | 0.848  | 0.849   | 0.776 | -  | 0.937               | -    | 0.788  | 0.815   | 0.892 | -    | <b>0.85</b> 3     | -    | 0.739  | 0.775   | 0.625 | -  | <b>0.9</b> 02 | -    | 0.898  | 0.806    | 0.872  | -    | 0.869                 | -    | 0.977        |
| Lights                               | 218    | 646     | 121   | 0  | <b>9</b> 85         | -    | 41     | 412     | 132   | 0    | 585               | -    | 131    | 184     | 59    | 0  | 374           | -    | 298    | 261      | 266    | 0    | 825                   | -    | 2769         |
| % Lights                             | 97.3%  | 99.1%   | 100%  | 0% | 98.8%               | -    | 100%   | 99.5%   | 100%  | 0% 9 | <del>)</del> 9.7% | -    | 98.5%  | 98.9%   | 98.3% | 0% | <b>98.7</b> % | -    | 100%   | 100%     | 97.8%  | 0% 9 | <b>9</b> 9 <b>.3%</b> | -    | 99.1%        |
| Articulated<br>Trucks                | 0      | 0       | 0     | 0  | 0                   | -    | 0      | 0       | 0     | 0    | 0                 | -    | 0      | 1       | 0     | 0  | 1             | -    | 0      | 0        | 0      | 0    | 0                     | -    | 1            |
| % Articulated<br>Trucks              | 0%     | 0%      | 0%    | 0% | <b>0%</b>           | -    | 0%     | 0%      | 0%    | 0%   | 0%                | -    | 0%     | 0.5%    | 0%    | 0% | <b>0.3</b> %  | -    | 0%     | 0%       | 0%     | 0%   | 0 <b>%</b>            | -    | 0%           |
| Buses and<br>Single-Unit<br>Trucks   | 6      | 6       | 0     | 0  | 1 <b>2</b>          | -    | 0      | 2       | 0     | 0    | 2                 | -    | 2      | 1       | 1     | 0  | 4             | -    | 0      | 0        | 6      | 0    | 6                     | -    | 24           |
| % Buses and<br>Single-Unit<br>Trucks | 2.7%   | 0.9%    | 0%    | 0% | 1.2%                | -    | 0%     | 0.5%    | 0%    | 0%   | 0.3%              | -    | 1.5%   | 0.5%    | 1.7%  | 0% | 1.1%          | -    | 0%     | 0%       | 2.2%   | 0%   | 0 <b>.7%</b>          | -    | 0.9%         |
| Pedestrians                          | -      | -       | -     | -  | -                   | 9    | -      | -       | -     | -    | -                 | 8    | -      | -       | -     | -  | -             | 6    | -      | -        | -      | -    | -                     | 18   |              |
| % Pedestrians                        | -      | -       | -     | -  | -                   | 100% | -      | -       | -     | -    | -                 | 100% | -      | -       | -     | -  | -             | 100% | -      | -        | -      | -    | -                     | 100% | -            |

\*Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Wed Feb 28, 2024 PM Peak (4:30 PM - 5:30 PM) - Overall Peak Hour All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians) All Movements ID: 1160886, Location: 44.671623, -63.490065



Provided by: Trans4m Development Group 59 Craigburn Drive, Dartmouth, NS, B2X 3E6, CA



[S] Cumberland Dr NB

# APPENDIX B

# Appendix B: TRIP GENERATION

Transportation Impact Study

#### Data Plot and Equation



#### **Data Plot and Equation**



#### DATA STATISTICS Land Use: Multifamily Housing (Mid-Rise) - Not Close to Rail Transit (221) Click for Description and Data Plots Independent Variable: **Dwelling Units** Time Period: Weekday Setting/Location: General Urban/Suburban Trip Type: Vehicle Number of Studies: Avg. Num. of Dwelling Units: Average Rate: 4.54 Range of Rates: 3.76 - 5.40 Standard Deviation: 0.51 Fitted Curve Equation: T = 4.77(X) - 46.46 R<sup>2</sup>: 0.93 Directional Distribution: 50% entering, 50% exiting Calculated Trip Ends: Average Rate: 663 (Total), 331 (Entry), 332 (Exit) Fitted Curve: 650 (Total), 325 (Entry), 325 (Exit)

#### DATA STATISTICS

| Land Use:                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------|
| Multifamily Housing (Mid-Rise) - Not Close to Rail<br>Transit (221) <u>Click for Description and Data Plots</u> |
| Independent Variable:                                                                                           |
| Dwelling Units                                                                                                  |
| Time Period:                                                                                                    |
| Weekday                                                                                                         |
| Peak Hour of Adjacent Street Traffic                                                                            |
| One Hour Between 7 and 9 a.m.                                                                                   |
| Setting/Location:                                                                                               |
| General Urban/Suburban                                                                                          |
| Trip Type:                                                                                                      |
| Vehicle                                                                                                         |
| Number of Studies:                                                                                              |
| 30                                                                                                              |
| Avg. Num. of Dwelling Units:                                                                                    |
| 173                                                                                                             |
| Average Rate:                                                                                                   |
| 0.37                                                                                                            |
| Range of Rates:                                                                                                 |
| 0.15 - 0.53                                                                                                     |
| Standard Deviation:                                                                                             |
| 0.09                                                                                                            |
| Fitted Curve Equation:                                                                                          |
| T = 0.44(X) - 11.61                                                                                             |
| R <sup>2</sup> .                                                                                                |
| 0.91                                                                                                            |
| Directional Distribution:                                                                                       |
| 23% entering, 77% exiting                                                                                       |
| Calculated Trip Ends:                                                                                           |
| Average Rate: 54 (Total), 12 (Entry), 42 (Exit)                                                                 |
| Fitted Curve: 53 (Total), 12 (Entry), 41 (Exit)                                                                 |

Data Plot and Equation



# APPENDIX C

# Appendix C: TRIP DISTRIBUTION AND ASSIGNMENT

#### **Development: 10 Cumberland**

| Driveway: | 1 | Driveway 1 |
|-----------|---|------------|
|           |   |            |

| Origin # | Pouto                            | Т              | o     | Fre            | om    |
|----------|----------------------------------|----------------|-------|----------------|-------|
| Oligin#  | Noule                            | Distribution % | Trips | Distribution % | Trips |
| 1        | Driveway 1 to Cumberland South   | 10.00          | 1     | 10.00          | 4     |
| 2        | Driveway 1 to Cole Harbour West  | 50.00          | 6     | 50.00          | 21    |
| 3        | Driveway 1 to Cole Harbour East  | 10.00          | 1     | 10.00          | 4     |
| 4        | Driveway 1 to Forest Hills North | 40.00          | 5     | 40.00          | 16    |

#### **Development: 10 Cumberland**

| Dilveway. I Dilveway i |
|------------------------|
|------------------------|

| Origin # | Pouto                            | Т              | o     | Fre            | om    |
|----------|----------------------------------|----------------|-------|----------------|-------|
| Oligin#  | Noule                            | Distribution % | Trips | Distribution % | Trips |
| 1        | Driveway 1 to Cumberland South   | 10.00          | 4     | 10.00          | 2     |
| 2        | Driveway 1 to Cole Harbour West  | 50.00          | 18    | 50.00          | 11    |
| 3        | Driveway 1 to Cole Harbour East  | 10.00          | 4     | 10.00          | 2     |
| 4        | Driveway 1 to Forest Hills North | 40.00          | 14    | 40.00          | 9     |

# APPENDIX D

# Appendix D: SYNCHRO REPORTS

Transportation Impact Study

#### 10 Cumberland Drive 2: Cumberland/Forest Hills & Cole Harbour

|                                     | ٠         | <b>→</b>    | 4          | ←         | 1           | t         | 1     | Ļ     | 4      |
|-------------------------------------|-----------|-------------|------------|-----------|-------------|-----------|-------|-------|--------|
| Lane Group                          | EBL       | EBT         | WBL        | WBT       | NBL         | NBT       | SBL   | SBT   | SBR    |
| Lane Configurations                 | 1         | <b>A1</b>   |            | <b>A1</b> | *           | 1.        | 1     | *     | 1      |
| Traffic Volume (vph)                | 118       | 223         | 50         | 685       | 166         | 210       | 154   | 111   | 264    |
| Future Volume (vph)                 | 118       | 223         | 50         | 685       | 166         | 210       | 154   | 111   | 264    |
| Lane Group Flow (vph)               | 128       | 293         | 54         | 1002      | 180         | 280       | 167   | 121   | 287    |
| Turn Type                           | pm+pt     | NA          | pm+pt      | NA        | pm+pt       | NA        | pm+pt | NA    | Perm   |
| Protected Phases                    | 7         | 4           | 3          | 8         | 5           | 2         | 1     | 6     | 1 0111 |
| Permitted Phases                    | . 4       | •           | 8          | v         | 2           | -         | 6     | v     | 6      |
| Detector Phase                      | 7         | 4           | 3          | 8         | 5           | 2         | 1     | 6     | 6      |
| Switch Phase                        |           |             |            |           | •           | -         | •     | , v   |        |
| Minimum Initial (s)                 | 5.0       | 5.0         | 5.0        | 5.0       | 5.0         | 5.0       | 5.0   | 5.0   | 5.0    |
| Minimum Split (s)                   | 95        | 22.5        | 95         | 22.5      | 95          | 22.5      | 95    | 22.5  | 22.5   |
| Total Split (s)                     | 96        | 31.0        | 96         | 31.0      | 10.2        | 24.0      | 10.4  | 24.2  | 24.2   |
| Total Split (%)                     | 12.8%     | 41.3%       | 12.8%      | 41.3%     | 13.6%       | 32.0%     | 13.9% | 32.3% | 32.3%  |
| Yellow Time (s)                     | 3.5       | 3.5         | 3.5        | 3.5       | 3.5         | 3.5       | 3.5   | 3.5   | 3.5    |
| All-Red Time (s)                    | 1.0       | 1.0         | 1.0        | 1.0       | 1.0         | 1.0       | 1.0   | 1.0   | 1.0    |
| Lost Time Adjust (s)                | 0.0       | 0.0         | 0.0        | 0.0       | 0.0         | 0.0       | 0.0   | 0.0   | 0.0    |
| Total Lost Time (s)                 | 4.5       | 4.5         | 4.5        | 4.5       | 4.5         | 4.5       | 4.5   | 4.5   | 4.5    |
| Lead/Lag                            | Lead      | Lag         | Lead       | Lag       | Lead        | Lag       | Lead  | Lag   | Lag    |
| Lead-Lag Optimize?                  | Yes       | Yes         | Yes        | Yes       | Yes         | Yes       | Yes   | Yes   | Yes    |
| Recall Mode                         | None      | None        | None       | None      | None        | Max       | None  | Max   | Max    |
| Act Effct Green (s)                 | 29.0      | 26.1        | 28.2       | 24.3      | 25.5        | 19.8      | 25.9  | 20.0  | 20.0   |
| Actuated g/C Ratio                  | 0.41      | 0.37        | 0.40       | 0.34      | 0.36        | 0.28      | 0.36  | 0.28  | 0.28   |
| v/c Ratio                           | 0.56      | 0.22        | 0.11       | 0.82      | 0.36        | 0.54      | 0.44  | 0.23  | 0.45   |
| Control Delay                       | 22.1      | 14.5        | 11.2       | 26.6      | 17.8        | 26.6      | 19.5  | 23.1  | 6.8    |
| Queue Delay                         | 0.0       | 0.0         | 0.0        | 0.0       | 0.0         | 0.0       | 0.0   | 0.0   | 0.0    |
| Total Delay                         | 22.1      | 14.5        | 11.2       | 26.6      | 17.8        | 26.6      | 19.5  | 23.1  | 6.8    |
| LOS                                 | С         | В           | В          | С         | В           | С         | В     | С     | Α      |
| Approach Delay                      |           | 16.8        |            | 25.8      |             | 23.2      |       | 13.9  |        |
| Approach LOS                        |           | В           |            | С         |             | С         |       | В     |        |
| Queue Length 50th (m)               | 9.6       | 13.0        | 3.9        | 61.3      | 16.5        | 32.4      | 15.2  | 13.5  | 2.4    |
| Queue Length 95th (m)               | #19.7     | 21.5        | 9.3        | 84.2      | 29.7        | 55.4      | 27.8  | 26.1  | 19.6   |
| Internal Link Dist (m)              |           | 207.7       |            | 236.6     |             | 96.0      |       | 167.6 |        |
| Turn Bay Length (m)                 | 40.0      |             | 50.0       |           |             |           |       |       |        |
| Base Capacity (vph)                 | 227       | 1416        | 479        | 1346      | 501         | 520       | 376   | 529   | 640    |
| Starvation Cap Reductn              | 0         | 0           | 0          | 0         | 0           | 0         | 0     | 0     | 0      |
| Spillback Cap Reductn               | 0         | 0           | 0          | 0         | 0           | 0         | 0     | 0     | 0      |
| Storage Cap Reductn                 | 0         | 0           | 0          | 0         | 0           | 0         | 0     | 0     | 0      |
| Reduced v/c Ratio                   | 0.56      | 0.21        | 0.11       | 0.74      | 0.36        | 0.54      | 0.44  | 0.23  | 0.45   |
| Intersection Summary                |           |             |            |           |             |           |       |       |        |
| Cycle Length: 75                    |           |             |            |           |             |           |       |       |        |
| Actuated Cycle Length: 71           |           |             |            |           |             |           |       |       |        |
| Natural Cycle: 65                   |           |             |            |           |             |           |       |       |        |
| Control Type: Semi Act-Uncoord      |           |             |            |           |             |           |       |       |        |
| Maximum v/c Ratio: 0.82             |           |             |            |           |             |           |       |       |        |
| Intersection Signal Delay: 21.1     |           |             |            | In        | tersection  | LOS: C    |       |       |        |
| Intersection Capacity Utilization 7 | 0.5%      |             |            | IC        | CU Level of | Service C |       |       |        |
| Analysis Period (min) 15            |           |             |            |           |             |           |       |       |        |
| # 95th percentile volume excee      | ds capaci | ty, queue r | nay be lon | ger.      |             |           |       |       |        |

Queue shown is maximum after two cycles.

Splits and Phases: 2: Cumberland/Forest Hills & Cole Harbour

| Ø1     | ¶ø2         | <b>√</b> Ø3 |         |
|--------|-------------|-------------|---------|
| 10.4s  | 24 s        | 9.6 s       | 31s     |
| Ø5     | <b>₽</b> Ø6 | ▶<br>Ø7     | ₩<br>Ø8 |
| 10.2 s | 24.2 s      | 9.6 s       | 31s     |
|        |             |             | uge     |

#### 10 Cumberland Drive 6: Driveway & Cumberland

|                                    | 4    | *    | Ť         | 1    | 1          | ŧ       |
|------------------------------------|------|------|-----------|------|------------|---------|
| Movement                           | WBL  | WBR  | NBT       | NBR  | SBL        | SBT     |
| Lane Configurations                | M    |      | <b>41</b> |      |            | 4       |
| Traffic Volume (veh/h)             | 5    | 5    | 374       | 5    | 5          | 418     |
| Future Volume (Veh/h)              | 5    | 5    | 374       | 5    | 5          | 418     |
| Sian Control                       | Stop | -    | Free      |      | -          | Free    |
| Grade                              | 0%   |      | 0%        |      |            | 0%      |
| Peak Hour Factor                   | 0.92 | 0.92 | 0.92      | 0.92 | 0.92       | 0.92    |
| Hourly flow rate (vph)             | 5    | 5    | 407       | 5    | 5          | 454     |
| Pedestrians                        | Ŭ    | Ű    | 101       | Ŭ    | Ŭ          | 101     |
| Lane Width (m)                     |      |      |           |      |            |         |
| Walking Speed (m/s)                |      |      |           |      |            |         |
| Percent Blockage                   |      |      |           |      |            |         |
| Right turn flare (veh)             |      |      |           |      |            |         |
| Median type                        |      |      | None      |      |            | None    |
| Median storade veh)                |      |      |           |      |            | NULLE   |
| Linstream signal (m)               |      |      |           |      |            | 120     |
| nX platoon unblocked               | 0 97 |      |           |      |            | 120     |
| vC conflicting volume              | 87/  | 206  |           |      | /12        |         |
| vC1 stage 1 confuel                | 074  | 200  |           |      | 412        |         |
| vC1, stage 1 contivol              |      |      |           |      |            |         |
|                                    | 951  | 206  |           |      | /10        |         |
|                                    | 001  | 200  |           |      | 412        |         |
| to, single (s) $t_{c}$ 2 stage (c) | 0.0  | 0.9  |           |      | 4.1        |         |
|                                    | Э E  | 2.2  |           |      | 0.0        |         |
| (r (s))                            | J.J  | J.J  |           |      | 2.Z        |         |
| pu quede free %                    | 90   | 99   |           |      | 1112       |         |
| civi capacity (ven/n)              | 20/  | 800  |           |      | 1143       |         |
| Direction, Lane #                  | WB 1 | NB 1 | NB 2      | SB 1 |            |         |
| Volume Total                       | 10   | 271  | 141       | 459  |            |         |
| Volume Left                        | 5    | 0    | 0         | 5    |            |         |
| Volume Right                       | 5    | 0    | 5         | 0    |            |         |
| cSH                                | 423  | 1700 | 1700      | 1143 |            |         |
| Volume to Capacity                 | 0.02 | 0.16 | 0.08      | 0.00 |            |         |
| Queue Length 95th (m)              | 0.6  | 0.0  | 0.0       | 0.1  |            |         |
| Control Delay (s)                  | 13.7 | 0.0  | 0.0       | 0.1  |            |         |
| Lane LOS                           | В    |      |           | А    |            |         |
| Approach Delay (s)                 | 13.7 | 0.0  |           | 0.1  |            |         |
| Approach LOS                       | В    |      |           |      |            |         |
|                                    | _    |      |           |      |            |         |
| Intersection Summary               |      |      |           |      |            |         |
| Average Delay                      |      |      | 0.2       |      |            |         |
| Intersection Capacity Utilization  | 1    |      | 36.0%     | ICI  | U Level of | Service |
| Analysis Period (min)              |      |      | 15        |      |            |         |

# 10 Cumberland Drive2: Cumberland/Forest Hills & Cole Harbour

|                                   | ٨            | -           | 1          | +           | 1          | Ť         | 4     | ŧ     | 4     |
|-----------------------------------|--------------|-------------|------------|-------------|------------|-----------|-------|-------|-------|
| Lane Group                        | EBL          | EBT         | WBL        | WBT         | NBL        | NBT       | SBL   | SBT   | SBR   |
| Lane Configurations               | <b>3</b>     | <b>41</b>   | 7          | <b>A</b> 1. | 5          | 1.        | 3     | *     | 1     |
| Traffic Volume (vph)              | 118          | 223         | 50         | 685         | 166        | 210       | 154   | 111   | 264   |
| Future Volume (vph)               | 144          | 272         | 61         | 835         | 202        | 256       | 188   | 135   | 322   |
| Lane Group Flow (vph)             | 157          | 358         | 66         | 1221        | 220        | 342       | 204   | 147   | 350   |
| Turn Type                         | pm+pt        | NA          | pm+pt      | NA          | pm+pt      | NA        | pm+pt | NA    | Perm  |
| Protected Phases                  | 7            | 4           | 3          | 8           | 5          | 2         | 1     | 6     |       |
| Permitted Phases                  | 4            |             | 8          | _           | 2          | _         | 6     | _     | 6     |
| Detector Phase                    | 7            | 4           | 3          | 8           | 5          | 2         | 1     | 6     | 6     |
| Switch Phase                      |              |             |            |             |            |           |       |       |       |
| Minimum Initial (s)               | 5.0          | 5.0         | 5.0        | 5.0         | 5.0        | 5.0       | 5.0   | 5.0   | 5.0   |
| Minimum Split (s)                 | 9.5          | 22.5        | 9.5        | 22.5        | 9.5        | 22.5      | 9.5   | 22.5  | 22.5  |
| Total Split (s)                   | 9.6          | 31.0        | 9.6        | 31.0        | 10.2       | 24.0      | 10.4  | 24.2  | 24.2  |
| Total Split (%)                   | 12.8%        | 41.3%       | 12.8%      | 41.3%       | 13.6%      | 32.0%     | 13.9% | 32.3% | 32.3% |
| Yellow Time (s)                   | 3.5          | 3.5         | 3.5        | 3.5         | 3.5        | 3.5       | 3.5   | 3.5   | 3.5   |
| All-Red Time (s)                  | 1.0          | 1.0         | 1.0        | 1.0         | 1.0        | 1.0       | 1.0   | 1.0   | 1.0   |
| Lost Time Adjust (s)              | 0.0          | 0.0         | 0.0        | 0.0         | 0.0        | 0.0       | 0.0   | 0.0   | 0.0   |
| Total Lost Time (s)               | 4.5          | 4.5         | 4.5        | 4.5         | 4.5        | 4.5       | 4.5   | 4.5   | 4.5   |
| Lead/Lag                          | Lead         | Lag         | Lead       | Lag         | Lead       | Lag       | Lead  | Lag   | Lag   |
| Lead-Lag Optimize?                | Yes          | Yes         | Yes        | Yes         | Yes        | Yes       | Yes   | Yes   | Yes   |
| Recall Mode                       | None         | None        | None       | None        | None       | Max       | None  | Max   | Max   |
| Act Effct Green (s)               | 32.5         | 28.4        | 31.6       | 26.5        | 25.2       | 19.5      | 25.6  | 19.7  | 19.7  |
| Actuated g/C Ratio                | 0.43         | 0.38        | 0.42       | 0.35        | 0.34       | 0.26      | 0.34  | 0.26  | 0.26  |
| v/c Ratio                         | 0.72         | 0.27        | 0.14       | 0.97        | 0.48       | 0.70      | 0.70  | 0.30  | 0.60  |
| Control Delay                     | 33.5         | 15.7        | 11.4       | 42.9        | 20.9       | 33.1      | 31.9  | 24.1  | 13.4  |
| Queue Delay                       | 0.0          | 0.0         | 0.0        | 0.0         | 0.0        | 0.0       | 0.0   | 0.0   | 0.0   |
| Total Delay                       | 33.5         | 15.7        | 11.4       | 42.9        | 20.9       | 33.1      | 31.9  | 24.1  | 13.4  |
| LOS                               | С            | В           | В          | D           | С          | С         | С     | С     | В     |
| Approach Delay                    |              | 21.1        |            | 41.3        |            | 28.3      |       | 21.0  |       |
| Approach LOS                      |              | С           |            | D           |            | С         |       | С     |       |
| Queue Length 50th (m)             | 12.0         | 16.6        | 4.8        | 83.5        | 20.7       | 41.7      | 19.0  | 16.6  | 13.7  |
| Queue Length 95th (m)             | #34.2        | 26.3        | 10.8       | #127.5      | 36.0       | #71.5     | #40.0 | 31.0  | 38.4  |
| Internal Link Dist (m)            |              | 207.7       |            | 236.6       |            | 96.0      |       | 167.6 |       |
| Turn Bay Length (m)               | 40.0         |             | 50.0       |             |            |           |       |       |       |
| Base Capacity (vph)               | 218          | 1343        | 478        | 1261        | 455        | 487       | 291   | 494   | 588   |
| Starvation Cap Reductn            | 0            | 0           | 0          | 0           | 0          | 0         | 0     | 0     | 0     |
| Spillback Cap Reductn             | 0            | 0           | 0          | 0           | 0          | 0         | 0     | 0     | 0     |
| Storage Cap Reductn               | 0            | 0           | 0          | 0           | 0          | 0         | 0     | 0     | 0     |
| Reduced v/c Ratio                 | 0.72         | 0.27        | 0.14       | 0.97        | 0.48       | 0.70      | 0.70  | 0.30  | 0.60  |
| Intersection Summary              |              |             |            |             |            |           |       |       |       |
| Cycle Length: 75                  |              |             |            |             |            |           |       |       |       |
| Actuated Cycle Length: 75         |              |             |            |             |            |           |       |       |       |
| Natural Cycle: 80                 |              |             |            |             |            |           |       |       |       |
| Control Type: Semi Act-Uncoor     | ď            |             |            |             |            |           |       |       |       |
| Maximum v/c Ratio: 0.97           |              |             |            |             |            |           |       |       |       |
| Intersection Signal Delay: 30.9   |              |             |            | In          | tersection | LOS: C    |       |       |       |
| Intersection Capacity Utilization | n 70.5%      |             |            | IC          | U Level of | Service C | ;     |       |       |
| Analysis Period (min) 15          |              |             |            |             |            |           |       |       |       |
| # 95th percentile volume exce     | eeds capacit | ty, queue r | nay be lon | ger.        |            |           |       |       |       |

Queue shown is maximum after two cycles.

Splits and Phases: 2: Cumberland/Forest Hills & Cole Harbour

| 10.4s 24s 9.6s 31s       | 13 11 |
|--------------------------|-------|
|                          |       |
| Ø5 ♥Ø6 Ø7 Ø8             |       |
| 10.2 s 24.2 s 9.6 s 31 s |       |

#### 10 Cumberland Drive 6: Driveway & Cumberland

|                                   | 1    | *    | 1         | 1    | 1          | Ŧ       |
|-----------------------------------|------|------|-----------|------|------------|---------|
| Movement                          | WBL  | WBR  | NBT       | NBR  | SBL        | SBT     |
| Lane Configurations               | M    |      | <b>A1</b> |      |            | 4       |
| Traffic Volume (veh/h)            | 5    | 5    | 374       | 5    | 5          | 418     |
| Future Volume (Veh/h)             | 6    | 6    | 456       | 6    | 6          | 510     |
| Sian Control                      | Stop |      | Free      |      |            | Free    |
| Grade                             | 0%   |      | 0%        |      |            | 0%      |
| Peak Hour Factor                  | 0.92 | 0.92 | 0.92      | 0.92 | 0.92       | 0.92    |
| Hourly flow rate (vph)            | 7    | 7    | 496       | 7    | 7          | 554     |
| Pedestrians                       |      |      |           |      |            |         |
| Lane Width (m)                    |      |      |           |      |            |         |
| Walking Speed (m/s)               |      |      |           |      |            |         |
| Percent Blockage                  |      |      |           |      |            |         |
| Right turn flare (veh)            |      |      |           |      |            |         |
| Median type                       |      |      | None      |      |            | None    |
| Median storage veh)               |      |      | Hono      |      |            | 110110  |
| Upstream signal (m)               |      |      |           |      |            | 120     |
| pX, platoon unblocked             | 0.95 |      |           |      |            | 120     |
| vC. conflicting volume            | 1068 | 252  |           |      | 503        |         |
| vC1_stage 1 conf vol              | 1000 | 202  |           |      | 000        |         |
| vC2 stage 2 conf vol              |      |      |           |      |            |         |
| vCu, unblocked vol                | 1043 | 252  |           |      | 503        |         |
| tC. single (s)                    | 6.8  | 6.9  |           |      | 4.1        |         |
| tC, 2 stage (s)                   | 0.0  | 0.0  |           |      |            |         |
| tF (s)                            | 35   | 33   |           |      | 22         |         |
| n0 queue free %                   | 97   | 99   |           |      | 99         |         |
| cM capacity (veh/h)               | 211  | 748  |           |      | 1058       |         |
|                                   |      |      |           |      |            |         |
| Direction, Lane #                 | WB 1 | NB 1 | NB 2      | SB 1 |            |         |
| Volume Total                      | 14   | 331  | 172       | 561  |            |         |
| Volume Left                       | 7    | 0    | 0         | 7    |            |         |
| Volume Right                      | 7    | 0    | 7         | 0    |            |         |
| cSH                               | 330  | 1700 | 1700      | 1058 |            |         |
| Volume to Capacity                | 0.04 | 0.19 | 0.10      | 0.01 |            |         |
| Queue Length 95th (m)             | 1.0  | 0.0  | 0.0       | 0.2  |            |         |
| Control Delay (s)                 | 16.4 | 0.0  | 0.0       | 0.2  |            |         |
| Lane LOS                          | С    |      |           | А    |            |         |
| Approach Delay (s)                | 16.4 | 0.0  |           | 0.2  |            |         |
| Approach LOS                      | С    |      |           |      |            |         |
| Intersection Summary              |      |      |           |      |            |         |
| Average Delay                     |      |      | 0.3       |      |            |         |
| Intersection Capacity Utilization |      |      | 36.0%     | ICI  | J Level of | Service |
| Analysis Period (min)             |      |      | 15        |      |            |         |

# 10 Cumberland Drive2: Cumberland/Forest Hills & Cole Harbour

|                                   | ٠          | -           | 1          | +         | 1           | Ť           | 4     | ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~     |
|-----------------------------------|------------|-------------|------------|-----------|-------------|-------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Lane Group                        | EBL        | EBT         | WBL        | WBT       | NBL         | NBT         | SBL   | SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SBR   |
| Lane Configurations               | 3          | <b>#1</b>   | 1          | <b>#1</b> | ×.          | 1           | *     | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |
| Traffic Volume (vph)              | 118        | 223         | 50         | 685       | 166         | 210         | 154   | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 264   |
| Future Volume (vph)               | 144        | 272         | 62         | 835       | 228         | 275         | 188   | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 322   |
| Lane Group Flow (vph)             | 157        | 367         | 67         | 1221      | 248         | 367         | 204   | 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 350   |
| Turn Type                         | pm+pt      | NA          | pm+pt      | NA        | pm+pt       | NA          | pm+pt | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Perm  |
| Protected Phases                  | 7          | 4           | 3          | 8         | 5           | 2           | 1     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| Permitted Phases                  | 4          | •           | 8          | Ū         | 2           | 2           | 6     | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6     |
| Detector Phase                    | 7          | 4           | 3          | 8         | 5           | 2           | 1     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6     |
| Switch Phase                      | •          |             | , v        |           |             | -           | •     | , in the second s |       |
| Minimum Initial (s)               | 50         | 50          | 50         | 50        | 50          | 50          | 50    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50    |
| Minimum Split (s)                 | 95         | 22.5        | 9.5        | 22.5      | 9.5         | 22.5        | 9.5   | 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.5  |
| Total Split (s)                   | 9.6        | 31.0        | 9.6        | 31.0      | 10.2        | 24.0        | 10.4  | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.2  |
| Total Split (%)                   | 12.8%      | 41.3%       | 12.8%      | 41.3%     | 13.6%       | 32.0%       | 13.9% | 32.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32.3% |
| Yellow Time (s)                   | 3.5        | 3.5         | 3.5        | 35        | 3.5         | 35          | 3.5   | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.5   |
| All-Red Time (s)                  | 10         | 10          | 1.0        | 10        | 10          | 10          | 1.0   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0   |
| Lost Time Adjust (s)              | 0.0        | 0.0         | 0.0        | 0.0       | 0.0         | 0.0         | 0.0   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0   |
| Total Lost Time (s)               | 4.5        | 4.5         | 4.5        | 4.5       | 4.5         | 4.5         | 4.5   | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.5   |
| lead/Lag                          | Lead       | Lag         | Lead       | Lag       | Lead        | Lag         | Lead  | Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lag   |
| Lead-Lag Optimize?                | Yes        | Yes         | Yes        | Yes       | Yes         | Yes         | Yes   | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes   |
| Recall Mode                       | None       | None        | None       | None      | None        | Max         | None  | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Max   |
| Act Effct Green (s)               | 32.5       | 28.4        | 31.6       | 26.5      | 25.2        | 19.5        | 25.6  | 19.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.7  |
| Actuated g/C Ratio                | 0.43       | 0.38        | 0.42       | 0.35      | 0.34        | 0.26        | 0.34  | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.26  |
| v/c Ratio                         | 0.72       | 0.00        | 0.12       | 0.00      | 0.55        | 0.75        | 0.76  | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.60  |
| Control Delay                     | 33 5       | 15.5        | 11.5       | 42.9      | 22.7        | 36 1        | 37.2  | 24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14 0  |
| Queue Delay                       | 0.0        | 0.0         | 0.0        | 0.0       | 0.0         | 0.0         | 0.0   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0   |
| Total Delay                       | 33.5       | 15.5        | 11.5       | 42.9      | 22.7        | 36.1        | 37.2  | 24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.0  |
| los                               | C          | B           | B          | D         | C           | D           | D     | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B     |
| Approach Delay                    |            | 20.9        | _          | 41.3      |             | 30.7        |       | 22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _     |
| Approach LOS                      |            | С           |            | D         |             | С           |       | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| Queue Lenath 50th (m)             | 12.0       | 16.8        | 4.8        | 83.5      | 23.8        | 45.8        | 19.0  | 17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.7  |
| Queue Length 95th (m)             | #34.2      | 26.5        | 10.9       | #127.5    | 40.4        | #83.6       | #37.9 | 32.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39.8  |
| Internal Link Dist (m)            |            | 207.7       |            | 236.6     |             | 96.0        |       | 167.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| Turn Bay Length (m)               | 40.0       |             | 50.0       |           |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Base Capacity (vph)               | 218        | 1343        | 473        | 1261      | 450         | 487         | 270   | 494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 582   |
| Starvation Cap Reductn            | 0          | 0           | 0          | 0         | 0           | 0           | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0     |
| Spillback Cap Reductn             | 0          | 0           | 0          | 0         | 0           | 0           | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0     |
| Storage Cap Reductn               | 0          | 0           | 0          | 0         | 0           | 0           | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0     |
| Reduced v/c Ratio                 | 0.72       | 0.27        | 0.14       | 0.97      | 0.55        | 0.75        | 0.76  | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.60  |
| Intersection Summary              |            |             |            |           |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Cycle Length: 75                  |            |             |            |           |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Actuated Cycle Length: 75         |            |             |            |           |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Natural Cycle: 75                 |            |             |            |           |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Control Type: Semi Act-Uncoor     | d          |             |            |           |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Maximum v/c Ratio: 0.97           |            |             |            |           |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Intersection Signal Delay: 31.7   |            |             |            | In        | tersection  | LOS: C      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Intersection Capacity Utilization | 70.5%      |             |            | IC        | CU Level of | f Service C | ;     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Analysis Period (min) 15          |            |             |            |           |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| # 95th percentile volume exce     | eds capaci | ty, queue r | nay be lor | ger.      |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 0 1                               |            |             |            |           |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |

Queue shown is maximum after two cycles.

Splits and Phases: 2: Cumberland/Forest Hills & Cole Harbour

| 10.4s 24s 9.6s 31s       | 24 |
|--------------------------|----|
|                          |    |
| Ø5 ♥Ø6 Ø7 Ø8             |    |
| 10.2 s 24.2 s 9.6 s 31 s |    |

#### 10 Cumberland Drive 6: Driveway & Cumberland

|                                   | 1         | *    | Ť         | 1    | 1          | Ŧ       |  |
|-----------------------------------|-----------|------|-----------|------|------------|---------|--|
| Movement                          | WBL       | WBR  | NBT       | NBR  | SBL        | SBT     |  |
| Lane Configurations               | M         |      | <b>A1</b> |      |            | 4       |  |
| Traffic Volume (veh/h)            | 5         | 5    | 374       | 5    | 5          | 418     |  |
| Future Volume (Veh/h)             | 11        | 56   | 456       | 7    | 21         | 510     |  |
| Sign Control                      | Ston      | 00   | Free      | •    |            | Free    |  |
| Grade                             | 0%        |      | 0%        |      |            | 0%      |  |
| Peak Hour Factor                  | 0.92      | 0 92 | 0.92      | 0 92 | 0 92       | 0.92    |  |
| Hourly flow rate (vph)            | 12        | 61   | 496       | 8    | 23         | 554     |  |
| Pedestrians                       | 14        | 01   | 100       | Ŭ    | 20         | 001     |  |
| Lane Width (m)                    |           |      |           |      |            |         |  |
| Walking Speed (m/s)               |           |      |           |      |            |         |  |
| Percent Blockage                  |           |      |           |      |            |         |  |
| Right turn flare (veh)            |           |      |           |      |            |         |  |
| Median type                       |           |      | None      |      |            | None    |  |
| Median storage veh)               |           |      |           |      |            |         |  |
| Linstream signal (m)              |           |      |           |      |            | 120     |  |
| nX nlatoon unblocked              | 0.04      |      |           |      |            | 120     |  |
| vC conflicting volume             | 1100      | 252  |           |      | 504        |         |  |
| vC1 stage 1 confivel              | 1100      | ZJZ  |           |      | 504        |         |  |
| vC2, stage 2 conf vol             |           |      |           |      |            |         |  |
| vCu, unblocked vol                | 1076      | 252  |           |      | 504        |         |  |
| $t_{c}$ single (s)                | 6101      | 252  |           |      | / 1        |         |  |
|                                   | 0.0       | 0.9  |           |      | 4.1        |         |  |
|                                   | 2.5       | 2.2  |           |      | 0.0        |         |  |
| IF (S)                            | 5.5       | 0.0  |           |      | 2.2        |         |  |
| po queue nee %                    | 94<br>109 | 92   |           |      | 90<br>1057 |         |  |
| civi capacity (ven/n)             | 190       | 740  |           |      | 1057       |         |  |
| Direction, Lane #                 | WB 1      | NB 1 | NB 2      | SB 1 |            |         |  |
| Volume Total                      | 73        | 331  | 173       | 577  |            |         |  |
| Volume Left                       | 12        | 0    | 0         | 23   |            |         |  |
| Volume Right                      | 61        | 0    | 8         | 0    |            |         |  |
| cSH                               | 513       | 1700 | 1700      | 1057 |            |         |  |
| Volume to Capacity                | 0.14      | 0.19 | 0.10      | 0.02 |            |         |  |
| Queue Length 95th (m)             | 3.8       | 0.0  | 0.0       | 0.5  |            |         |  |
| Control Delay (s)                 | 13.2      | 0.0  | 0.0       | 0.6  |            |         |  |
| Lane LOS                          | В         |      |           | A    |            |         |  |
| Approach Delay (s)                | 13.2      | 0.0  |           | 0.6  |            |         |  |
| Approach LOS                      | В         |      |           |      |            |         |  |
|                                   | _         |      |           |      |            |         |  |
| Intersection Summary              |           |      |           |      |            |         |  |
| Average Delay                     |           |      | 1.1       |      |            |         |  |
| Intersection Capacity Utilization |           |      | 36.0%     | ICI  | J Level of | Service |  |
| Analysis Period (min)             |           |      | 15        |      |            |         |  |

# 10 Cumberland Drive2: Cumberland/Forest Hills & Cole Harbour

|                                   | ٠             | <b>→</b>   | 1          | +     | 1          | t         | 4             | Ļ     | 4      |
|-----------------------------------|---------------|------------|------------|-------|------------|-----------|---------------|-------|--------|
| Lane Group                        | EBL           | EBT        | WBL        | WBT   | NBL        | NBT       | SBL           | SBT   | SBR    |
| Lane Configurations               | *             | A1.        | K          | A1.   | K          | 1         | 1002          |       | 1      |
| Traffic Volume (vph)              | 224           | 652        | /1         | A1A   | 133        | 186       | 298           | 261   | 272    |
| Future Volume (vph)               | 224           | 652        | /1         | 414   | 133        | 186       | 200           | 261   | 272    |
| Lane Group Flow (vph)             | 2/3           | 8/1        | /5         | 503   | 1/5        | 267       | 324           | 201   | 296    |
|                                   | nm+nt         | NΔ         | nm+nt      | NΔ    | nm+nt      | NΔ        | nm+nt         | NΔ    | Perm   |
| Protected Phases                  | 7             | 1          | 3          | 8     | 5          | 2         | - pin-pt<br>1 | 6     | T CITI |
| Pormitted Phases                  | 1             | 4          | 8          | 0     | 2          | 2         | 6             | 0     | 6      |
| Detector Phase                    | 7             | 1          | 3          | 8     | 5          | 2         | 1             | 6     | 6      |
| Switch Phase                      |               | 7          | 0          | 0     | v          | 2         |               | U     | 0      |
| Minimum Initial (s)               | 50            | 50         | 50         | 50    | 50         | 50        | 50            | 50    | 50     |
| Minimum Split (s)                 | 9.5           | 22.5       | 9.5        | 22.5  | 9.5        | 22.5      | 9.5           | 22.5  | 22.5   |
| Total Split (s)                   | 18.0          | 33.0       | 9.6        | 24.6  | 11.3       | 25.4      | 22.0          | 36.1  | 36.1   |
| Total Split (%)                   | 20.0%         | 36.7%      | 10.7%      | 27.3% | 12.6%      | 28.2%     | 24.4%         | 40.1% | 40.1%  |
| Yellow Time (s)                   | 35            | 3.5        | 3.5        | 35    | 3.5        | 35        | 3.5           | 35    | 3.5    |
| All-Red Time (s)                  | 1.0           | 10         | 10         | 10    | 10         | 10        | 10            | 10    | 10     |
| Lost Time Adjust (s)              | 0.0           | 0.0        | 0.0        | 0.0   | 0.0        | 0.0       | 0.0           | 0.0   | 0.0    |
| Total Lost Time (s)               | 4.5           | 4.5        | 4.5        | 4.5   | 4.5        | 4.5       | 4.5           | 4.5   | 4.5    |
| Lead/Lag                          | Lead          | Lan        | Lead       | Lag   | Lead       | Lan       | Lead          | Lan   | Lan    |
| Lead-Lag Optimize?                | Yes           | Yes        | Yes        | Yes   | Yes        | Yes       | Yes           | Yes   | Yes    |
| Recall Mode                       | None          | None       | None       | None  | None       | Max       | None          | Max   | Max    |
| Act Effct Green (s)               | 35.4          | 29.8       | 23.3       | 18.2  | 30.7       | 23.9      | 42.6          | 31.7  | 31.7   |
| Actuated g/C Ratio                | 0.41          | 0.34       | 0.27       | 0.21  | 0.35       | 0.27      | 0.49          | 0.36  | 0.36   |
| v/c Ratio                         | 0.70          | 0.70       | 0.27       | 0.79  | 0.33       | 0.53      | 0.63          | 0.42  | 0.38   |
| Control Delay                     | 30.1          | 28.5       | 19.3       | 38.8  | 16.9       | 31.5      | 20.6          | 24.0  | 42     |
| Queue Delay                       | 0.0           | 0.0        | 0.0        | 0.0   | 0.0        | 0.0       | 0.0           | 0.0   | 0.0    |
| Total Delay                       | 30.1          | 28.5       | 19.3       | 38.8  | 16.9       | 31.5      | 20.6          | 24.0  | 42     |
| LOS                               | C             | C          | B          | D     | B          | C         | C             | C     | A      |
| Approach Delay                    |               | 28 9       |            | 37.4  |            | 264       | Ŭ             | 163   |        |
| Approach LOS                      |               | C          |            | D     |            | C         |               | B     |        |
| Queue Length 50th (m)             | 27.3          | 66 1       | 45         | 467   | 137        | 37 9      | 34.4          | 37.0  | 0.0    |
| Queue Length 95th (m)             | #48.3         | 87.5       | 10.7       | 64.9  | 24.5       | 63 7      | 53.8          | 58.6  | 15.9   |
| Internal Link Dist (m)            |               | 207 7      | 10.1       | 236.6 | 21.0       | 96.0      | 00.0          | 167.6 | 10.0   |
| Turn Bay Length (m)               | 40.0          | 231.1      | 50.0       | 200.0 |            | 00.0      |               |       |        |
| Base Capacity (vph)               | 359           | 1214       | 202        | 828   | 441        | 508       | 554           | 682   | 769    |
| Starvation Cap Reductn            | 0             | 0          | 0          | 0     | 0          | 0         | 0             | 0     | 0      |
| Spillback Cap Reductn             | 0             | 0          | 0          | 0     | 0          | 0         | 0             | 0     | 0      |
| Storage Cap Reductn               | 0             | 0          | 0          | 0     | 0          | 0         | 0             | 0     | 0      |
| Reduced v/c Ratio                 | 0.68          | 0.69       | 0.22       | 0.72  | 0.33       | 0.53      | 0.58          | 0.42  | 0.38   |
| Intersection Summary              |               |            |            |       |            |           |               |       |        |
| Cycle Length: 90                  |               |            |            |       |            |           |               |       |        |
| Actuated Cycle Longth: 97.4       |               |            |            |       |            |           |               |       |        |
| Natural Cycle: 65                 |               |            |            |       |            |           |               |       |        |
| Control Type: Somi Act Unecorr    | 4             |            |            |       |            |           |               |       |        |
| Maximum v/c Ratio: 0.70           | u             |            |            |       |            |           |               |       |        |
| Intersection Signal Delay: 26.6   |               |            |            | le.   | toreaction | 108-0     |               |       |        |
| Intersection Capacity Utilization | 73 0%         |            |            |       |            | EOU. U    |               |       |        |
| Analysis Poriod (min) 15          | 15.070        |            |            | I.    | O Lever O  | Dervice D |               |       |        |
| # 95th porcontilo volumo even     | ode conoci    | hu quoue r | nav ha lan | aor   |            |           |               |       |        |
| Oueue shown is maximum at         | fter two ever | los        | nay be ion | yer.  |            |           |               |       |        |
| Queue snown is maximum a          | ner iwo cyc   | 163.       |            |       |            |           |               |       |        |

Splits and Phases: 2: Cumberland/Forest Hills & Cole Harbour

| Ø1          | <b>₫</b> Ø2 | <b>√</b> Ø3 →Ø4                 |  |
|-------------|-------------|---------------------------------|--|
| 22 s        | 25.4 s      | 9.6 s 33 s                      |  |
| ↑ø5 \$      | Ø6          | ▶ <sub>Ø7</sub> ▼ <sub>Ø8</sub> |  |
| 11.3 s 36.1 | S           | 18 s 24.6 s                     |  |

#### 10 Cumberland Drive 6: Driveway & Cumberland

|                                   | 1    | *    | Ť         | 1    | 1          | ŧ       |
|-----------------------------------|------|------|-----------|------|------------|---------|
| Movement                          | WBL  | WBR  | NBT       | NBR  | SBL        | SBT     |
| Lane Configurations               | M    |      | <b>41</b> |      |            | 4       |
| Traffic Volume (veh/h)            | 5    | 5    | 374       | 5    | 5          | 418     |
| Future Volume (Veh/h)             | 5    | 5    | 374       | 5    | 5          | 418     |
| Sign Control                      | Ston | Ŭ    | Free      | v    | v          | Free    |
| Grade                             | 0%   |      | 0%        |      |            | 0%      |
| Peak Hour Factor                  | 0.92 | 0 92 | 0.92      | 0 92 | 0.92       | 0.92    |
| Hourly flow rate (yph)            | 5    | 5    | /07       | 5    | 5          | 151     |
| Pedestrians                       | 0    | 0    | 101       | U    | 0          | -0-     |
| Lane Width (m)                    |      |      |           |      |            |         |
| Walking Speed (m/s)               |      |      |           |      |            |         |
| Percent Plackage                  |      |      |           |      |            |         |
| Percent blockage                  |      |      |           |      |            |         |
| Right turn hare (ven)             |      |      | Nama      |      |            | Nama    |
| Median type                       |      |      | None      |      |            | None    |
| Median storage ven)               |      |      |           |      |            | 400     |
| Upstream signal (m)               | 0.00 |      |           |      |            | 120     |
| px, platoon unblocked             | 0.89 | 000  |           |      | 440        |         |
| vC, conflicting volume            | 8/4  | 206  |           |      | 412        |         |
| vC1, stage 1 cont vol             |      |      |           |      |            |         |
| vC2, stage 2 conf vol             |      |      |           |      |            |         |
| vCu, unblocked vol                | 792  | 206  |           |      | 412        |         |
| tC, single (s)                    | 6.8  | 6.9  |           |      | 4.1        |         |
| tC, 2 stage (s)                   |      |      |           |      |            |         |
| tF (s)                            | 3.5  | 3.3  |           |      | 2.2        |         |
| p0 queue free %                   | 98   | 99   |           |      | 100        |         |
| cM capacity (veh/h)               | 287  | 800  |           |      | 1143       |         |
| Direction, Lane #                 | WB 1 | NB 1 | NB 2      | SB 1 |            |         |
| Volume Total                      | 10   | 271  | 141       | 459  |            |         |
| Volume Left                       | 5    | 0    | 0         | 5    |            |         |
| Volume Right                      | 5    | 0    | 5         | 0    |            |         |
| cSH                               | 423  | 1700 | 1700      | 1143 |            |         |
| Volume to Capacity                | 0.02 | 0.16 | 0.08      | 0.00 |            |         |
| Queue Length 95th (m)             | 0.6  | 0.0  | 0.0       | 0.1  |            |         |
| Control Delay (s)                 | 13.7 | 0.0  | 0.0       | 0.1  |            |         |
| Lane LOS                          | В    |      |           | А    |            |         |
| Approach Delay (s)                | 13.7 | 0.0  |           | 0.1  |            |         |
| Approach LOS                      | B    | 0.0  |           | 0.1  |            |         |
|                                   | U    |      |           |      |            |         |
| Intersection Summary              |      |      |           |      |            |         |
| Average Delay                     |      |      | 0.2       |      |            |         |
| Intersection Capacity Utilization | ۱    |      | 36.0%     | ICI  | U Level of | Service |
| Analysis Period (min)             |      |      | 15        |      |            |         |

# 10 Cumberland Drive2: Cumberland/Forest Hills & Cole Harbour

|                                   | ٠           | -           | 1          | +         | 1          | Ť           | 4     | ŧ     | 4     |
|-----------------------------------|-------------|-------------|------------|-----------|------------|-------------|-------|-------|-------|
| Lane Group                        | EBL         | EBT         | WBL        | WBT       | NBL        | NBT         | SBL   | SBT   | SBR   |
| Lane Configurations               | 3           | <b>A</b> 1. |            | <b>A1</b> | *          | 1.          | 3     | *     | 1     |
| Traffic Volume (vph)              | 224         | 652         | 41         | 414       | 133        | 186         | 298   | 261   | 272   |
| Future Volume (vph)               | 273         | 795         | 50         | 505       | 162        | 227         | 363   | 318   | 332   |
| ane Group Flow (vph)              | 297         | 1024        | 54         | 724       | 176        | 326         | 395   | 346   | 361   |
| Turn Type                         | pm+pt       | NA          | pm+pt      | NA        | pm+pt      | NA          | pm+pt | NA    | Perm  |
| Protected Phases                  | 7           | 4           | 3          | 8         | 5          | 2           | 1     | 6     |       |
| Permitted Phases                  | 4           |             | 8          |           | 2          | -           | 6     |       | 6     |
| Detector Phase                    | 7           | 4           | 3          | 8         | 5          | 2           | 1     | 6     | 6     |
| Switch Phase                      |             |             |            |           |            |             |       |       |       |
| Minimum Initial (s)               | 5.0         | 5.0         | 5.0        | 5.0       | 5.0        | 5.0         | 5.0   | 5.0   | 5.0   |
| Minimum Split (s)                 | 9.5         | 22.5        | 9.5        | 22.5      | 9.5        | 22.5        | 9.5   | 22.5  | 22.5  |
| Total Split (s)                   | 18.0        | 33.0        | 9.6        | 24.6      | 11.3       | 25.4        | 22.0  | 36.1  | 36.1  |
| Total Split (%)                   | 20.0%       | 36.7%       | 10.7%      | 27.3%     | 12.6%      | 28.2%       | 24.4% | 40.1% | 40.1% |
| Yellow Time (s)                   | 3.5         | 3.5         | 3.5        | 3.5       | 3.5        | 3.5         | 3.5   | 3.5   | 3.5   |
| All-Red Time (s)                  | 1.0         | 1.0         | 1.0        | 1.0       | 1.0        | 1.0         | 1.0   | 1.0   | 1.0   |
| Lost Time Adjust (s)              | 0.0         | 0.0         | 0.0        | 0.0       | 0.0        | 0.0         | 0.0   | 0.0   | 0.0   |
| Total Lost Time (s)               | 4.5         | 4.5         | 4.5        | 4.5       | 4.5        | 4.5         | 4.5   | 4.5   | 4.5   |
| Lead/Lag                          | Lead        | Lag         | Lead       | Lag       | Lead       | Lag         | Lead  | Lag   | Lag   |
| Lead-Lag Optimize?                | Yes         | Yes         | Yes        | Yes       | Yes        | Yes         | Yes   | Yes   | Yes   |
| Recall Mode                       | None        | None        | None       | None      | None       | Max         | None  | Max   | Max   |
| Act Effct Green (s)               | 37.8        | 30.2        | 25.0       | 19.9      | 28.4       | 21.6        | 42.9  | 31.6  | 31.6  |
| Actuated g/C Ratio                | 0.42        | 0.34        | 0.28       | 0.22      | 0.32       | 0.24        | 0.48  | 0.35  | 0.35  |
| v/c Ratio                         | 0.85        | 0.86        | 0.30       | 0.91      | 0.45       | 0.72        | 0.85  | 0.52  | 0.45  |
| Control Delay                     | 44.6        | 36.7        | 21.1       | 48.7      | 20.2       | 40.8        | 36.2  | 26.6  | 4.4   |
| Queue Delay                       | 0.0         | 0.0         | 0.0        | 0.0       | 0.0        | 0.0         | 0.0   | 0.0   | 0.0   |
| Total Delay                       | 44.6        | 36.7        | 21.1       | 48.7      | 20.2       | 40.8        | 36.2  | 26.6  | 4.4   |
| LOS                               | D           | D           | С          | D         | С          | D           | D     | С     | Α     |
| Approach Delay                    |             | 38.5        |            | 46.8      |            | 33.6        |       | 22.8  |       |
| Approach LOS                      |             | D           |            | D         |            | С           |       | С     |       |
| Queue Length 50th (m)             | 34.6        | 86.8        | 5.4        | 60.7      | 17.0       | 49.9        | 44.0  | 46.9  | 0.0   |
| Queue Length 95th (m)             | #77.3       | #124.7      | 12.1       | #92.9     | 29.2       | #87.0       | #88.1 | 72.5  | 17.3  |
| Internal Link Dist (m)            |             | 207.7       |            | 236.6     |            | 96.0        |       | 167.6 |       |
| Turn Bay Length (m)               | 40.0        |             | 50.0       |           |            |             |       |       |       |
| Base Capacity (vph)               | 349         | 1192        | 181        | 806       | 387        | 450         | 473   | 663   | 797   |
| Starvation Cap Reductn            | 0           | 0           | 0          | 0         | 0          | 0           | 0     | 0     | 0     |
| Spillback Cap Reductn             | 0           | 0           | 0          | 0         | 0          | 0           | 0     | 0     | 0     |
| Storage Cap Reductn               | 0           | 0           | 0          | 0         | 0          | 0           | 0     | 0     | 0     |
| Reduced v/c Ratio                 | 0.85        | 0.86        | 0.30       | 0.90      | 0.45       | 0.72        | 0.84  | 0.52  | 0.45  |
| Intersection Summary              |             |             |            |           |            |             |       |       |       |
| Cycle Length: 90                  |             |             |            |           |            |             |       |       |       |
| Actuated Cycle Length: 89.7       |             |             |            |           |            |             |       |       |       |
| Natural Cycle: 80                 |             |             |            |           |            |             |       |       |       |
| Control Type: Semi Act-Uncoord    |             |             |            |           |            |             |       |       |       |
| Maximum v/c Ratio: 0.91           |             |             |            |           |            |             |       |       |       |
| Intersection Signal Delay: 34.9   |             |             |            | In        | tersection | LOS: C      |       |       |       |
| Intersection Capacity Utilization | 73.0%       |             |            | IC        | U Level of | f Service D | )     |       |       |
| Analysis Period (min) 15          |             |             |            |           |            |             |       |       |       |
| # 95th percentile volume excee    | eds capaci  | ty, queue r | nay be lon | ger.      |            |             |       |       |       |
| Queue shown is maximum aft        | ter two cyc | les.        | -          |           |            |             |       |       |       |

Splits and Phases: 2: Cumberland/Forest Hills & Cole Harbour

| Ø1            | <b>₫</b> ø2 | <b>√</b> 03 →0 | 4      | 53 50 |
|---------------|-------------|----------------|--------|-------|
| 22 s          | 25.4 s      | 9.6 s 33 s     |        |       |
| ↑ø5 \$        | <b>0</b> 6  |                | Ø8     |       |
| 11.3 s 36.1 s |             | 18 s           | 24.6 s |       |

#### 10 Cumberland Drive 6: Driveway & Cumberland

|                                   | 1    | *         | 1         | 1    | 1          | Ŧ       |
|-----------------------------------|------|-----------|-----------|------|------------|---------|
| Movement                          | WBL  | WBR       | NBT       | NBR  | SBL        | SBT     |
| Lane Configurations               | M    |           | <b>A1</b> |      |            | 4       |
| Traffic Volume (veh/h)            | 5    | 5         | 374       | 5    | 5          | 418     |
| Future Volume (Veh/h)             | 6    | 6         | 456       | 6    | 6          | 510     |
| Sian Control                      | Stop |           | Free      |      |            | Free    |
| Grade                             | 0%   |           | 0%        |      |            | 0%      |
| Peak Hour Factor                  | 0.92 | 0.92      | 0.92      | 0.92 | 0.92       | 0.92    |
| Hourly flow rate (vph)            | 7    | 7         | 496       | 7    | 7          | 554     |
| Pedestrians                       |      |           | 100       |      |            | 001     |
| Lane Width (m)                    |      |           |           |      |            |         |
| Walking Speed (m/s)               |      |           |           |      |            |         |
| Percent Blockage                  |      |           |           |      |            |         |
| Right turn flare (veh)            |      |           |           |      |            |         |
| Median type                       |      |           | None      |      |            | None    |
| Median storage veh)               |      |           | 110110    |      |            | TOTIC   |
| Upstream signal (m)               |      |           |           |      |            | 120     |
| nX platoon unblocked              | 0.85 |           |           |      |            | 120     |
| vC conflicting volume             | 1068 | 252       |           |      | 503        |         |
| vC1_stage 1 conf vol              | 1000 | 202       |           |      | 000        |         |
| vC2 stage 2 conf vol              |      |           |           |      |            |         |
| vCu, unblocked vol                | 992  | 252       |           |      | 503        |         |
| tC single (s)                     | 6.8  | 69        |           |      | 4 1        |         |
| $tC_2$ stage (s)                  | 0.0  | 0.0       |           |      | 1.1        |         |
| tF (s)                            | 35   | 33        |           |      | 22         |         |
| n (3)                             | 97   | 0.0<br>QQ |           |      | 00         |         |
| cM capacity (veh/h)               | 205  | 748       |           |      | 1058       |         |
|                                   | 200  | 740       |           |      | 1000       |         |
| Direction, Lane #                 | WB 1 | NB 1      | NB 2      | SB 1 |            |         |
| Volume Total                      | 14   | 331       | 172       | 561  |            |         |
| Volume Left                       | 7    | 0         | 0         | 7    |            |         |
| Volume Right                      | 7    | 0         | 7         | 0    |            |         |
| cSH                               | 322  | 1700      | 1700      | 1058 |            |         |
| Volume to Capacity                | 0.04 | 0.19      | 0.10      | 0.01 |            |         |
| Queue Length 95th (m)             | 1.0  | 0.0       | 0.0       | 0.2  |            |         |
| Control Delay (s)                 | 16.7 | 0.0       | 0.0       | 0.2  |            |         |
| Lane LOS                          | С    |           |           | А    |            |         |
| Approach Delay (s)                | 16.7 | 0.0       |           | 0.2  |            |         |
| Approach LOS                      | С    |           |           |      |            |         |
| Intersection Summary              |      |           |           |      |            |         |
| Average Delay                     |      |           | 0.3       |      |            |         |
| Intersection Capacity Utilization |      |           | 36.0%     | ICI  | J Level of | Service |
| Analysis Period (min)             |      |           | 15        |      |            |         |

# 10 Cumberland Drive2: Cumberland/Forest Hills & Cole Harbour

|                                   | ٠            | -           | 1          | +         | 1          | Ť         | 4     | ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |
|-----------------------------------|--------------|-------------|------------|-----------|------------|-----------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Lane Group                        | EBL          | EBT         | WBL        | WBT       | NBL        | NBT       | SBL   | SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SBR   |
| Lane Configurations               | *            | <b>A1</b>   | *          | <b>A1</b> | *          | 1         |       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |
| Traffic Volume (vph)              | 224          | 652         | 41         | 414       | 133        | 186       | 298   | 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 272   |
| Future Volume (vph)               | 273          | 795         | 55         | 505       | 176        | 238       | 363   | 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 332   |
| Lane Group Flow (vph)             | 297          | 1048        | 60         | 724       | 191        | 342       | 395   | 364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 361   |
| Turn Type                         | pm+pt        | NA          | pm+pt      | NA        | pm+pt      | NA        | pm+pt | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Perm  |
| Protected Phases                  | 7            | 4           | 3          | 8         | 5          | 2         | 1     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| Permitted Phases                  | 4            |             | 8          |           | 2          | -         | 6     | , in the second s | 6     |
| Detector Phase                    | 7            | 4           | 3          | 8         | 5          | 2         | 1     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6     |
| Switch Phase                      |              |             | -          | -         | -          | _         |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -     |
| Minimum Initial (s)               | 5.0          | 5.0         | 5.0        | 5.0       | 5.0        | 5.0       | 5.0   | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.0   |
| Minimum Split (s)                 | 9.5          | 22.5        | 9.5        | 22.5      | 9.5        | 22.5      | 9.5   | 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.5  |
| Total Split (s)                   | 18.0         | 33.0        | 9.6        | 24.6      | 11.3       | 25.4      | 22.0  | 36.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36.1  |
| Total Split (%)                   | 20.0%        | 36.7%       | 10.7%      | 27.3%     | 12.6%      | 28.2%     | 24.4% | 40.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.1% |
| Yellow Time (s)                   | 3.5          | 3.5         | 3.5        | 3.5       | 3.5        | 3.5       | 3.5   | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.5   |
| All-Red Time (s)                  | 1.0          | 1.0         | 1.0        | 1.0       | 1.0        | 1.0       | 1.0   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0   |
| Lost Time Adjust (s)              | 0.0          | 0.0         | 0.0        | 0.0       | 0.0        | 0.0       | 0.0   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0   |
| Total Lost Time (s)               | 4.5          | 4.5         | 4.5        | 4.5       | 4.5        | 4.5       | 4.5   | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.5   |
| Lead/Lag                          | Lead         | Lag         | Lead       | Lag       | Lead       | Lag       | Lead  | Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lag   |
| Lead-Lag Optimize?                | Yes          | Yes         | Yes        | Yes       | Yes        | Yes       | Yes   | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes   |
| Recall Mode                       | None         | None        | None       | None      | None       | Max       | None  | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Max   |
| Act Effct Green (s)               | 37.8         | 30.1        | 25.0       | 19.9      | 28.3       | 21.5      | 42.9  | 31.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.6  |
| Actuated g/C Ratio                | 0.42         | 0.34        | 0.28       | 0.22      | 0.32       | 0.24      | 0.48  | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.35  |
| v/c Ratio                         | 0.85         | 0.88        | 0.33       | 0.91      | 0.51       | 0.76      | 0.88  | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.45  |
| Control Delay                     | 44.7         | 38.4        | 21.8       | 48.7      | 21.7       | 43.3      | 40.1  | 27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.5   |
| Queue Delay                       | 0.0          | 0.0         | 0.0        | 0.0       | 0.0        | 0.0       | 0.0   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0   |
| Total Delay                       | 44.7         | 38.4        | 21.8       | 48.7      | 21.7       | 43.3      | 40.1  | 27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.5   |
| LOS                               | D            | D           | С          | D         | С          | D         | D     | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Α     |
| Approach Delay                    |              | 39.8        |            | 46.6      |            | 35.6      |       | 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Approach LOS                      |              | D           |            | D         |            | D         |       | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| Queue Length 50th (m)             | 34.5         | 89.5        | 6.0        | 60.7      | 18.6       | 53.1      | 44.0  | 49.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3   |
| Queue Length 95th (m)             | #77.1        | #129.6      | 13.3       | #92.9     | 31.5       | #93.7     | #93.1 | 76.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.7  |
| Internal Link Dist (m)            |              | 207.7       |            | 236.6     |            | 96.0      |       | 167.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| Turn Bay Length (m)               | 40.0         |             | 50.0       |           |            |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Base Capacity (vph)               | 349          | 1190        | 182        | 807       | 377        | 448       | 460   | 663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 795   |
| Starvation Cap Reductn            | 0            | 0           | 0          | 0         | 0          | 0         | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0     |
| Spillback Cap Reductn             | 0            | 0           | 0          | 0         | 0          | 0         | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0     |
| Storage Cap Reductn               | 0            | 0           | 0          | 0         | 0          | 0         | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0     |
| Reduced v/c Ratio                 | 0.85         | 0.88        | 0.33       | 0.90      | 0.51       | 0.76      | 0.86  | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.45  |
| Intersection Summary              |              |             |            |           |            |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Cycle Length: 90                  |              |             |            |           |            |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Actuated Cycle Length: 89 7       |              |             |            |           |            |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Natural Cycle: 90                 |              |             |            |           |            |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Control Type: Semi Act-Uncoorr    | d            |             |            |           |            |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Maximum v/c Ratio: 0.91           | -            |             |            |           |            |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Intersection Signal Delay: 36.1   |              |             |            | In        | tersection | LOS: D    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Intersection Capacity Utilization | 73 0%        |             |            | 10        | Ulevelot   | Service D | )     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Analysis Period (min) 15          | . 0.070      |             |            |           |            | 5011100 D |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| # 95th percentile volume exce     | eds capaci   | tv. queue r | nav be lon | aer.      |            |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Queue shown is maximum a          | fter two cvo | les.        | ,          | 0         |            |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |

Splits and Phases: 2: Cumberland/Forest Hills & Cole Harbour

| Ø1    | <b>₫</b> <i>ø</i> 2 | <b>√</b> Ø3 →Ø4 | 2<br>103 - 103 |
|-------|---------------------|-----------------|----------------|
| 22 s  | 25.4 s              | 9.6 s 33 s      |                |
| Ø5    |                     | ▶ <sub>Ø7</sub> | Ø8             |
| 11.3s | 36.1 s              | 18 s 24         | 4.6 s          |

#### 10 Cumberland Drive 6: Driveway & Cumberland

|                                   | 1    | *    | Ť         | 1    | 1            | ŧ       |  |
|-----------------------------------|------|------|-----------|------|--------------|---------|--|
| Movement                          | WBL  | WBR  | NBT       | NBR  | SBL          | SBT     |  |
| Lane Configurations               | M    |      | <b>41</b> |      |              | £       |  |
| Traffic Volume (veh/h)            | 5    | 5    | 374       | 5    | 5            | 418     |  |
| Future Volume (Veh/h)             | 9    | 33   | 456       | 11   | 50           | 510     |  |
| Sign Control                      | Stop |      | Free      |      |              | Free    |  |
| Grade                             | 0%   |      | 0%        |      |              | 0%      |  |
| Peak Hour Factor                  | 0.92 | 0.92 | 0.92      | 0.92 | 0.92         | 0.92    |  |
| Hourly flow rate (vph)            | 10   | 36   | 496       | 12   | 54           | 554     |  |
| Pedestrians                       |      |      |           |      |              |         |  |
| Lane Width (m)                    |      |      |           |      |              |         |  |
| Walking Speed (m/s)               |      |      |           |      |              |         |  |
| Percent Blockage                  |      |      |           |      |              |         |  |
| Right turn flare (veh)            |      |      |           |      |              |         |  |
| Median type                       |      |      | None      |      |              | None    |  |
| Median storage veh)               |      |      |           |      |              |         |  |
| Upstream signal (m)               |      |      |           |      |              | 120     |  |
| pX. platoon unblocked             | 0.84 |      |           |      |              |         |  |
| vC. conflicting volume            | 1164 | 254  |           |      | 508          |         |  |
| vC1, stage 1 conf vol             |      |      |           |      |              |         |  |
| vC2, stage 2 conf vol             |      |      |           |      |              |         |  |
| vCu, unblocked vol                | 1099 | 254  |           |      | 508          |         |  |
| tC. single (s)                    | 6.8  | 6.9  |           |      | 4.1          |         |  |
| tC, 2 stage (s)                   |      |      |           |      |              |         |  |
| tE (s)                            | 3.5  | 3.3  |           |      | 2.2          |         |  |
| p0 queue free %                   | 94   | 95   |           |      | 95           |         |  |
| cM capacity (veh/h)               | 164  | 745  |           |      | 1053         |         |  |
|                                   |      |      |           | 05.4 |              |         |  |
| Direction, Lane #                 | WB 1 | NB 1 | NB 2      | SB 1 |              |         |  |
| Volume Total                      | 46   | 331  | 177       | 608  |              |         |  |
| Volume Left                       | 10   | 0    | 0         | 54   |              |         |  |
| Volume Right                      | 36   | 0    | 12        | 0    |              |         |  |
| cSH                               | 422  | 1700 | 1700      | 1053 |              |         |  |
| Volume to Capacity                | 0.11 | 0.19 | 0.10      | 0.05 |              |         |  |
| Queue Length 95th (m)             | 2.8  | 0.0  | 0.0       | 1.2  |              |         |  |
| Control Delay (s)                 | 14.6 | 0.0  | 0.0       | 1.4  |              |         |  |
| Lane LOS                          | В    |      |           | А    |              |         |  |
| Approach Delay (s)                | 14.6 | 0.0  |           | 1.4  |              |         |  |
| Approach LOS                      | В    |      |           |      |              |         |  |
| Intersection Summary              |      |      |           |      |              |         |  |
| Average Delay                     |      |      | 1.3       |      |              |         |  |
| Intersection Capacity Utilization |      |      | 36.0%     | ICI  | U Level of S | Service |  |
| Analysis Period (min)             |      |      | 15        |      |              |         |  |