MAINLAND COMMON TRAFFIC IMPACT STUDY FINAL REPORT

PREPARED FOR: RANK INC

JUNE 2023

Project No. CA0004090.6438

vsp

TABLE OF CONTENTS

1	INTRODUCTION	1
2	STUDY AREA DESCRIPTIONS	2
3	BACKGROUND TRAFFIC	4
4	ACTIVE TRANSPORTATION AND TRANSIT	5
5	TRIP GENERATION, DISTRIBUTION, AND ASSIGNMENT	7
6	INTERSECTION OPERATIONAL ANALYSIS	9
6.1 6.2 6.3 7 7.1 7.2	Analysis Scenarios Int #1: Lacewood Drive at Regency Park Drive Int #2: Washmill Lake Drive at Regency Park Drive SUMMARY & RECOMMENDATIONS Summary Recommendations	10 11 12 13 13 14

APPENDICES

- A TRAFFIC VOLUME DATA
- **B** WARRANT ANALYSIS
- C INTERSECTION PERFORMANCE ANALYSIS

PREPARED BY:

BRIANNA RIETZEL, EIT PATRICK HATTON, P.ENG.

1 INTRODUCTION

Background

Plans are being prepared for a multi-use development consisting of 2,750 residential units and 143,380 square feet of commercial space north of the Bayers Lake Business Park in Halifax, Nova Scotia, see Figure 1. Buildout of the development is expected by 2034. The Halifax Regional Municipality (HRM) has requested that a Traffic Impact Study (TIS) be completed to review the impacts to the adjacent transportation network. WSP Canada Inc. has been retained to complete a TIS for the proposed Mainland Common development.

Figure 1 – Development Location

A Traffic Impact Study Usually Considers Four Questions

Study

Objectives

A TIS usually consists of determining answers to the following questions:

- 1. What is the existing transportation situation adjacent to the study site? How have volumes changed historically?
- 2. What transportation changes are expected at key Study Area locations? How many vehicle trips are expected to be generated by the proposed development during weekday peak hours? What routes are the trips expected to use to travel within and through the Study Area?
- 3. What transportation impacts will occur on Study Area roads, sidewalks, and intersections?
- 4. What transportation improvements are required to mitigate project impacts on Study Area travel? Are there transportation modifications that should be made to improve the travel experience for all users?

The objectives of the traffic impact study are to:

- 1. Develop projected 2034 background weekday AM and PM peak hourly traffic volumes for Study Intersections. This includes connection of Regency Park Drive and diverted traffic but does not include site development.
- 2. Estimate the number of weekday AM and PM peak hour vehicle trips that will be generated by the proposed development.
- 3. Distribute and assign site generated trips to Study Intersections to project 2034 peak hourly volumes that include site generated trips.
- 4. Evaluate impacts of site generated traffic on the performance of Study Intersections.
- 5. Complete warrant analyses, as necessary, for Study Intersections and recommend improvements that may be needed at Study Intersections to mitigate the impacts of site development.

2 STUDY AREA DESCRIPTIONS

Description of Existing Development

Description of Proposed Development The proposed development area is on the vacant land bounded by Washmill Lake Drive and Thomas Raddall Drive.

The proposed development is planned to include 264 mid-rise residential units, 2,486 high-rise residential units, and 143,380 square feet of retail space. The study will consider the build out development scenario with a study horizon year of 2034.

A concept of the proposed development is shown in Figure 2. The proposed development consists of 12 residential towers, of which many will have commercial space.

Figure 2 - Site Concept

Existing Study Road Descriptions *Washmill Lake Drive* is a four-lane major collector through Clayton Park, running from Chain Lake Drive in the west to Dunbrack Street in the east with a speed limit of 60 km/h in this area. There are sidewalks and dedicated bicycle lanes on both sides of Washmill Lake Drive.

Regency Park Drive is a two-lane major collector with a speed limit of 50 km/h that runs south from Lacewood Drive about 850m to its current terminus. There are sidewalks on both sides of the road and no existing dedicated bicycle lanes.

Parkland Drive is a two-lane major collector with a speed limit of 50 km/h. Parkland Drive is a continuation of Regency Park Drive north of Lacewood Drive. There are sidewalks on both sides of the road and no dedicated bicycle lanes.

Lacewood Drive is a four-lane arterial with a posted speed limit of 60 km/h at the study intersection with Regency Park Drive. There are sidewalks on both sides of the road and no dedicated bicycle lanes.

\\SD

Existing Study Intersection Descriptions

The traffic study includes review of two intersections around the site. These intersections are shown in Figure 3 and a description of each is provided below.

Figure 3 - Study Intersections

Intersection #1 – Lacewood Drive at Parkland Drive/Regency Park Drive is a 4-leg signalized intersection with a left-turn lane, two through lanes, and a right-turn channelized lane in the eastbound and westbound directions; and a left-turn lane, a through lane, and a right-turn channelized lane in the northbound and southbound directions. All approaches have marked pedestrian crossings.

Intersection #2 – Washmill Lake Drive at Regency Park Drive is a proposed 4-leg intersection. Washmill Lake Drive is a four-lane roadway running east west with a proposed street connection (Regency Park Drive) as the southbound approach and a driveway for the development forming the northbound approach.

3 BACKGROUND TRAFFIC

Turning Movement Counts	Turning movement counts were collected at the Lacewood Drive at Regency Park Drive / Parkland Drive and Washmill Lake Drive at Bently Drive intersections on Wednesday, June 21, 2023 for the PM peak period and on Thursday, June 22, 2023 for the AM peak period. The counts at the Bently Drive intersection were used to estimate the two-way volumes along Washmill Lake Drive fronting the site and project the future volumes at the Washmill Lake Drive at Regency Park Drive intersection.
	Intersection counts have been tabulated in 15-minute intervals with peak hours indicated by shaded areas. Pedestrian volumes are summarized in hourly increments. Turning movement counts are summarized in Tables A-1 to A-2, Appendix A, and illustrated diagrammatically in Figure A-1, Appendix A.
Traffic Growth Rate	An annual growth rate of 0.5% was applied to project the 2034 Future Background Volumes (see Figure A-2, Appendix A). This is expected to account for continuing development in the area in additional vehicle trips generated by population increases in the area and coincides with the HRM 0.5% annual traffic growth target.
Redistribution of Background Traffic to the Extended Regency Park Drive	With the proposed extension of Regency Park Drive, it is anticipated that some background traffic in the current roadway network will redistribute their trips to the extended roadway. The projected 2034 Future Background Volumes with the Extension of Regency Park Drive are shown in Figure A-3, Appendix A.

4 ACTIVE TRANSPORTATION AND TRANSIT

Active Transportation

Sidewalk facilities are available along each of the study roads and sidewalk is planned for both sides along the extended Regency Park Drive. Bicycle facilities are also planned for the extended Regency Park Drive and the developer intends to work with HRM to ensure the desired bicycle facility type is put in place with the road extension. It is understood that HRM is currently undertaking a project that would see bicycle facilities installed on Parkland Drive up to Lacewood Drive and will include options for providing bicycle facilities crossing at the Lacewood Drive intersection. While the exact bicycle facility type proposed for Parkland Drive is not yet known, it is recommended that HRM consider extending the preferred bicycle facility

Figure 4 – Candidate Bicycle Facilities Extracted from Map 2C, Making Connections, Halifax

Transit There are many transit stops in the area (#6719 and #7446 along Washmill Lake Drive near Bently Drive just to the east of the site, as well as several transit routes along the existing portion of Regency Park Drive and Thomas Raddall Drive). The site is about 1.3km from the Lacewood Terminal, which is serviced by Halifax Transit routes #2, #3, #4, #21, #28, #30, #39, #135, #136, #137, #138, and #433. The existing transit network in the area is shown in Figure 5.

Figure 5 – Existing Halifax Transit Routes

A transit route (#137, Regency Park Express) running along the extended Regency Park Drive fronting the site and connecting to Scotia Square (AM) and Lacewood Terminal (PM) was proposed in Map 1 of the Council Approved Halifax Transit Moving Forward Together Plan (See Figure 6). It is anticipated that the extended street will include routing of transit fronting the site given the current routing along Regency Park Drive and Washmill Lake Drive and the proximity to the Lacewood Terminal.

Figure 6 – Proposed Transit Routes in the project area Extracted from Map 1, Halifax Transit Moving Forward Together Plan

TRIP GENERATION, DISTRIBUTION, AND 5 ASSIGNMENT

Prepared Trip Generation Estimates	When using the published trip generation rates in the Trip Generation Manual, the transportation engineer's objective should be to provide a realistic estimate of the number of trips that will be generated by the proposed development.
Existing & Proposed Redevelopment	The proposed development is expected to include 264 mid-rise residential units, 2,486 high-rise residential units, and 143,380 square feet of commercial development. The site currently services commercial and office land uses.
Anticipated Land Use for the Proposed Development	Trips generated by Mid-Rise Multifamily Housing (Land Use 221), High-Rise Multifamily Housing (Land Use 222), and Shopping Plaza (Land Use 821) are estimated for the AM and PM peak hours by the number of dwelling units (residential) and square footage (commercial). Trip generation estimates for the proposed development were prepared using published rates and equations from <i>Trip Generation Manual</i> , 11 th Edition (Institute of Transportation Engineers, Washington, 2021).
Trips Generated by the Proposed Development –	Trip generation estimates for the proposed development is summarized in Table 1 without accounting for internal on-site synergies or non-auto trips. It is estimated that the development will generate:
iotai irips	

- 918 two-way trips (370 entering and 548 exiting) during the AM peak hour; and,
- 1518 two-way trips (803 entering and 715 exiting) during the PM peak hour.

		Trip Generation Rates ³				Trip Generation Estimates ³			
Land Use ¹	Units ²	AM Peak		PM Peak		AM Peak		PM Peak	
		In	Out	In	Out	In	Out	In	Out
Multifamily Housing (Mid Rise) (Dwelling Units) 221	264	Equations from Page 292 & 293			24	81	63	40	
Multifamily Housing (High Rise) 222	2486	Eq	Equations from Page 307 & 308			192	373	375	295
Shopping Plaza (40-150k GLA) 821	143.38 KGLA	R	Rates from Pages 213 & 214			154	94	365	380
	Total	Trip Estima	ate for the P	roposed De	evelopment	370	548	803	715
NOTES: 1. Rates and equations are from Trip Generation	n, 11th Editio	n, Institute o	f Transportat	tion Enginee	rs, 2021.				
2. KGLA is 'Gross Leasable Area x 1000 SF'.									

Table 1 – Total Trip Generation Estimates for the Proposed Development

3. Rates are 'vehicles per hour per unit'; trips generated are 'vehicles per hour for peak hours'.

Trips Generated by the Proposed Development -Internal Capture

Generated

The site is located near the Lacewood Transit Terminal and several transit routes and there are existing or planned bicycle facilities along Washmill Lake Drive, Regency Park Drive, and Parkland Drive with existing or planned active transportation connections to the Mainland North Trail, the Burnside Business Park, and the Chain of Lakes Trail (See Section 4). Non-auto reductions (10% for retail trips and 15% for residential trips) have been applied to the estimated trips. These non-auto reductions are conservative compared to the 26% target set out in HRM's Integrated Mobility Plan for the Inner Suburban Area. Many vehicle trips generated by large scale development with multiple land uses are isolated within the development site. The National Cooperative Highway Research Program (NCHRP) Report 684 - Enhancing Internal Trip Capture for Mixed-Use Developments provides an estimation tool for reducing vehicle trips, visible on pages B-5 and B-6, Appendix B. Results are summarized in Table 2. It is estimated that the development will generate:

- 777 two-way vehicle trips (314 entering and 463 exiting) during the AM peak hour; and, •
- 1107 two-way vehicle trips (589 entering and 518 exiting) during the PM peak hour.

		NC	IRP Interna	I Trip Redu	ction	Trip Generation Estimates ³			
Land Use ¹	Units ²	AM Peak		PM	Peak	AM Peak		PM Peak	
		In	Out	In	Out	In	Out	In	Out
Multifamily Housing (Mid Rise) (Dwelling Units) 221	264	29/	10/	220/	0%	24	80	49	36
Multifamily Housing (High Rise) 222	2486	2486		9%	188	369	289	268	
Shopping Plaza (40-150k GLA) 821	143	3%	4%	8%	24%	149	90	335	288
					Total	361	539	673	592
			Reducti	ion for non-	auto Trips ⁴	47	76	84	74
	Vehicle	Trip Estima	ate for the P	roposed De	evelopment	314	463	589	518
NOTES: 1. Rates and equations are from Trip Generation	on, 11th Editio	n, Institute o	f Transporta	tion Enginee	rs, 2021.				
2. KGLA is 'Gross Leasable Area x 1000 SF'.									
 Trips generated are 'vehicles per hour for pe A reduction has been applied to account for r 	ak hours'. ìon-auto trips;	10% for sho	pping centre	trips and 15	% for resider	ntial trips.			

Table 2 – Total Trip Generation Estimates for the Proposed Development

Trip Distribution and Assignment

The proposed development generated trips were distributed to the Study Intersections based on counted volumes and review of travel origin and destinations around the site. For retail development attraction, regional residential development has been considered. For new residential development, employment densities and retail draws have been considered. The estimated directional distributions are provided below.

Direction	Residential	Commercial
North on Parkland Street	5%	5%
South/West on Washmill Lake	25%	30%
Drive		
North/East to Lacewood Drive	15%	15%
East on Washmill Lake Drive	30%	25%
North/West to Lacewood	25%	25%
Drive		

Volume Figures Weekday AM and PM peak hourly estimated site generated vehicle volumes were distributed and assigned to external streets and intersections in the study area using the above assumptions. Assigned AM and PM peak hourly site generated volumes are illustrated diagrammatically in Figure A-4, Appendix A. Assigned site development trips were added to background volumes with redistribution for the extended Regency Park Drive (Figure A-3) to provide estimates of the AM and PM peak hour volumes at study area intersections for development build-out which are illustrated diagrammatically on Figure A-5, Appendix A.

6 INTERSECTION OPERATIONAL ANALYSIS

Intersection Level of Service (LOS) Analysis was completed to estimate how intersections may be expected to operate into the future without and with site generated trips. This section of the report addresses how left-turn lane warrants and traffic signal warrants were conducted and how each intersection was evaluated. The following subsections identify each study intersection and summarize the results of the operational analysis.

Left-Turn Lane Warrant Analysis	Left-turn movements on a two-lane street may cause both operational and safety problems. Operational problems result as a vehicle stopped waiting for an opportunity to turn across 'heavy' opposing traffic causes a queue of stopped vehicles to form. Safety problems result from rear end collisions when a stopped left-turning vehicle is struck by an advancing vehicle, or from head-on or right-angle collisions when a left-turning vehicle is struck by an opposing vehicle.
	The <i>Geometric Design Standards for Ontario Highways Manual</i> contains a nomograph for left- turn lane analysis for four lane undivided streets at unsignalized intersections. The analysis method, which is normally used by WSP Atlantic to evaluate the warrant for left-turn lanes along four lane roadways, uses a nomograph that considers left-turning volume and opposing volume. A point, based on left turning and 'opposing' volumes, plotted to the right of the 'warrant line' indicates that a left-turn lane is warranted for the conditions used in the analysis. Similarly, a point that is plotted to the left of the warrant line indicates that a left-turn lane is not warranted.
	Evaluation of left turn lane warrants were completed for the Washmill Lake Drive at Regency Park Drive using 2034 traffic volumes with redistribution of existing traffic onto the extended Regency Park Drive without and with the proposed development and a left-turn lane is warranted in the eastbound direction on Washmill Lake Drive at Regency Park Drive without and with the addition of site generated trips. A westbound left turn lane is found to be warranted with the addition of site generated trips. Left-turn lane warrant results are available in Figure B-1, Appendix B.
	The addition of a warranted left-turn lane has been identified based on safety of left turning vehicles but are at the discretion of HRM based on operational needs and right-of-way limitations.
Traffic Signal Warrant Analysis	A signal warrant analysis is completed to determine if the installation of traffic signals at an intersection will provide a positive impact on total intersection operation. That is, the benefits in time saved and improved safety that will accrue to vehicles entering from a side street will exceed the impact that signals will have in time lost and potential additional collisions for vehicles approaching the intersection on the main street.
	The Canadian Traffic Signal Warrant Matrix Analysis (Transportation Association of Canada (TAC), 2005) considers 100 warrant points as an indication that traffic signals will provide a positive impact. Signal warrant analysis uses vehicular and pedestrian volumes, and intersection, roadway and study area characteristics to calculate a warrant point value.
	Evaluation of traffic signal warrants were completed for appropriate intersection using 2034 traffic volumes with the proposed development and traffic signals are warranted (184 warrant points) at the unsignalized study intersection (Washmill Lake Drive at Regency Park Drive) with the addition of site generated trips. Signal warrant results are available in Tables B-1 and B-2, Appendix B.
Intersection Capacity Analysis Results	<i>Synchro 11</i> software has been used for performance evaluation of signalized and STOP controlled Study Intersections. Summaries of the results are provided in the following sub-sections and detailed results of the analyses are included in Appendix C.

6.1 ANALYSIS SCENARIOS

Summary Analysis Scenarios Considered *Scenario 1A - Future 2034 without Site:* Represents future 2034 traffic volumes on the existing road network, including the existing traffic control and lane configurations of the Study Intersections.

Scenario 1B - Future 2034 without Site – Diverted Trips: Represents future 2034 traffic volumes with future diverted trips onto the Regency Park Drive connection. The study intersections have been modified to accommodate a westbound left-turn lane on Washmill Lake Drive at Regency Park Drive based on the warrants summarized in Appendix B.

Scenario 2 - Future 2034 with Site: Represents future 2034 traffic volumes on the existing road network, including the existing traffic control and lane configurations of the Study Intersections with buildout of the proposed development. The study intersections have been modified to accommodate left-turn lanes and traffic signalization at the Washmill Lake Drive at Regency Park Drive intersection based on the warrants summarized in Appendix B.

6.2 INT #1: LACEWOOD DRIVE AT REGENCY PARK DRIVE

Operational performance results for this intersection are provided in Table 4 for both the AM and PM peak hours for each of the analysis scenarios.

The intersection is expected to operate within HRM acceptable limits laid out in HRM's current TIS Guidelines during the AM and PM peak hours without and with site generated trips. The maximum v/c ratio is projected to be 0.78 for the northbound left-turn movement. Some changes in the operational performance of this intersection are expected with the addition of the proposed development.

	r	lab	le 3 - In	tersectio	on Capad	city Ana	iysis: La	cewood	Drive a	t Regeno	cy Park	Drive		
	Cont	rol Delay	(sec/veh), Level c	of Service	e (LOS), v Move	v/c Ratio, ement	and 95 th	%ile Que	ue (m) by	/ Interse	ction	0	verall
LOS Criteria Lacewood Drive				Regency Park Drive			Parkland Drive			Intersection				
	EB-L	EB-TT	EB-R	WB-L	WB-TT	WB-R	NB-L	NB-T	NB-R	SB-L	SB-T	SB-R	Delay	Control
	Scenario 1A - 2034 Future without Site AM Peak Hour (Page C-1)													
Delay	6.4	15.7	8.9	6.4	13.7	6.7	20.7	15.1	5.6	21.2	16.1	2.6		
v/c	0.15	0.34	0.30	0.18	0.25	0.18	0.41	0.08	0.27	0.45	0.17	0.34	12.3	
Queue	9.5	25.3	17.1	10.8	21.7	11.3	23.1	7.9	10.1	25.3	14.2	11.5		
			S	cenario ⁻	1B - 203	4 Future	without S	Site AM P	eak Hou	r (Page C	C-3)			
Delay	6.2	16.0	8.4	6.5	13.3	6.2	20.0	15.8	5.7	21.3	17.4	6.0		
v/c	0.12	0.31	0.27	0.22	0.22	0.17	0.37	0.14	0.32	0.44	0.28	0.29	12.3	jdí
Queue	8.0	23.3	14.7	12.9	19.6	10.2	20.0	11.5	10.9	24.3	20.2	10.7		
				Scenari	o 2 - 203	34 Future	e with Site	e AM Pea	k Hour (Page C-7	7)			
Delay	9.2	21.3	11.5	10.2	16.2	7.3	27.8	15.6	4.7	19.1	16.6	6.3		
v/c	0.14	0.37	0.47	0.34	0.21	0.17	0.67	0.15	0.43	0.37	0.25	0.26	14.6	387
Queue	11.6	29.6	25.2	27.7	25.1	12.2	45.8	16.0	14.1	26.0	24.2	12.3		
			S	cenario	1A - 2034	4 Future	without S	Site PM P	eak Hou	r (Page C	C-2)			
Delay	10.9	18.0	133	8.3	19.6	9.6	27.6	17.6	5.7	22.4	18.4	5.5		
v/c	0.50	0.51	0.41	0.27	0.57	0.29	0.59	0.09	0.28	0.40	0.18	0.35	15.8	
Queue	29.2	53.0	36.3	16.7	48.9	18.6	41.0	11.1	11.5	28.9	18.3	13.2		
			S	cenario ⁻	1B - 203	4 Future	without S	Site PM P	eak Hou	r (Page (C-5)			
Delay	8.7	19.3	13.0	8.7	18.6	9.2	25.9	18.3	5.6	22.6	18.9	6.5		٦ O r
v/c	0.36	0.56	0.42	0.36	0.52	0.28	0.55	0.23	0.38	0.42	0.28	0.31	15.4	
Queue	22.4	45.9	29.0	21.2	42.6	17.3	33.4	20.4	13.1	26.7	24.3	12.7		
				Scenari	o 2 - 203	84 Future	e with Site	PMPea	k Hour (Page C-9	9)			
Delay	14.1	26.7	26.8	16.3	22.2	10.8	38.0	19.5	5.6	21.8	19.9	7.7		
v/c	0.43	0.59	0.75	0.59	0.48	0.28	0.78	0.22	0.42	0.32	0.26	0.26	21.1	
Queue	32.0	62.1	72.7	45.6	53.4	20.6	76.3	28.2	18.5	30.3	33.5	16.6		

6.3 INT #2: WASHMILL LAKE DRIVE AT REGENCY PARK DRIVE

Operational performance results for this intersection are provided in Table 4 for both the AM and PM peak hours for each of the analysis scenarios. Left-turn lanes and signals are included as warranted.

With added left turn lanes as warranted and with signalization in Scenario 2, the intersection is expected to operate within HRM acceptable limits during the AM and PM peak hours without and with site generated trips. The maximum v/c ratio is projected to be 0.77 in the westbound direction during the PM peak hour.

	Table	4 - Intersection (Capacity /	Analysis: Wa	ashmill Lake Dri	ve at Reg	ency Park Dr	ive	
	Control De	elay (sec/veh), Le	evel of Se Inter	rvice (LOS), section Mov	v/c Ratio, and 9 ement	95 th %ile Q	ueue (m) by	0	verall
LOS Criteria		Washmill Lak	e Drive		Access	Regency	y Park Drive	Inte	rsection
	EB-L	EB-TT	w	B-TTR		s	B-LR	Delay	Control
		Scenario 1B	- 2034 F	uture withou	it Site AM Peak	Hour (Pa	ge C-4)		
Delay	8.8	0.0		0.0	-		13.4		
v/c	0.07	0.12	(0.21	-		0.17	1.6	
Queue	1.7	0.0		0.0	-		5.0		
	EB-L	EB-TT	WB-L	WB-TTR	NB-LTR	SB-L	SB-TR	Delay	Control
		Scenario 2	2 - 2034 F	uture with S	Site AM Peak Ho	our (Page	C-8)		
Delay	5.9	6.3	13.0	13.8	13.2	22.0	7.0		
v/c	0.21	0.19	0.02	0.42	0.18	0.44	0.33	11.2	idr
Queue	11.9	18.6	3.5	43.1	12.0	25.1	13.0		
	EB-L	EB-TT	W	B-TTR		s	B-LR	Delay	Control
		Scenario 1B	- 2034 F	uture withou	t Site PM Peak	Hour (Pa	ge C-6)		
Delay	10.1	0.0		0.0	-	25.3			
v/c	0.17	0.27	().29	-	0.43		2.4	
Queue	4.7	0.0	0.0		-		16.5		
	EB-L	EB-TT	WB-L	WB-TTR	NB-LTR	SB-L	SB-TR	Delay	Control
		Scenario 2	- 2034 F	uture with S	ite PM Peak Ho	our (Page	C-10)		
Delay	12.3	8.9	14.6	20.4	14.8	34.3	8.0		· D /
v/c	0.55	0.47	0.10	0.77	0.12	0.67	0.40	15.6	idí
Queue	25.8	49.5	6.0	76.3	10.3	45.6	17.3		יטי

7 SUMMARY & RECOMMENDATIONS

7.1 SUMMARY

Background	1. Plans are being prepared for a multi-use development consisting of 2,750 residential units and 143,380 square feet of commercial space north of the Bayers Lake Business Park in Halifax, Nova Scotia. Buildout of the development is expected by 2034.
Description of Existing Development	2. The proposed development area is on the vacant land bounded by Washmill Lake Drive and Thomas Raddall Drive.
Description of Proposed Development	3. The proposed development is expected to include 264 mid-rise residential units, 2,486 high-rise residential units, and 143,380 square feet of commercial development.
Proposed Site Access	4. The proposed development is proposed along an extension of Regency Park Drive through to Washmill Lake Drive with several small accesses along Washmill Lake Drive.
Study Area Roads	5. The study considers Washmill Lake Drive, Regency Park Drive, Lacewood Drive, and Parkland Drive.
Turning Movement Counts	6. Turning movement counts were collected by WSP on Wednesday, June 21, 2023 (PM peak period), and on Thursday, June 22, 2023 (AM peak period).
Background Traffic Volumes	 Projected 2034 peak hour future background volumes include an annual growth of 0.5% between 2023 and 2034.
	8. Some background traffic in the current roadway network will be redistributed to the extension of Regency Park Drive. A separate volume scenario has been prepared that considers these redistributed background trips.
Estimation of Existing & Proposed	9. Trip generation estimates for the proposed development were prepared using rates published in <i>Trip Generation</i> , 11 th Edition (Institute of Transportation Engineers, Washington, 2021).
Development Trips	 Trip generation estimates were reduced considering non-auto modes and for internal capture using methodology from The National Cooperative Highway Research Program (NCHRP) Report 684 – Enhancing Internal Trip Capture for Mixed-Use Developments.
	 11. It is estimated that the development will generate: 777 two-way vehicle trips (314 entering and 463 exiting) during the AM peak hour: and
	 1107 two-way vehicle trips (589 entering and 518 exiting) during the PM peak hour.
Trip Distribution and Assignment	12. Proposed development generated trips were distributed to the Study Intersections based on counted volumes considering major trip origins and destinations in the region. Retail trips have been assigned considering regional residential development, while residential trips have been assigned considering employment densities and retail draws.
Warrant Analysis Summary	13. Warrant reviews were completed for left-turn lanes and traffic signals with the projected traffic volumes without and with site generated trips.
	 14. It was determined that: An eastbound left turn lane will be warranted along Washmill Lake Drive at Regency Park Drive without and with site generated trips.

	 A westbound left turn lane will be warranted along Washmill Lake Drive at Regency Park Drive with site generated trips. Traffic signals will be warranted at Washmill Lake Drive at Regency Park Drive with site generated trips.
Summary – Intersection	15. Intersection performance analysis was completed using <i>Synchro 11</i> at the Study Intersections.
Capacity Analysis	16. The Lacewood Drive at Regency Park Drive/Parkland Drive intersection is expected to operate well and within HRM acceptable limits during the AM and PM peak periods in all scenarios.
	17. The Washmill Lake Drive at Regency Park Drive intersection is expected to operate well and within HRM guidelines with added turn lanes and traffic signalization, as warranted, during both the AM and PM peak periods.

7.2 RECOMMENDATIONS

Recommend-	It is recommended that at the new Washmill Lake Drive at Regency Park Drive intersection:							
auons	a) Install left turn eastbound and westbound left turn lanes on Washmill Lake Drive when connection to Regency Park Drive is completed.							
	b) Install traffic signals at the intersection (warranted with site development).							
	19. HRM should consider the type of bicycle connections appropriate for the existing and new portions of Regency Park Drive. It is likely that the bicycle facilities along Regency Park Drive will extend what is determined for Parkland Drive and connect to the existing bicycle lanes along Washmill Lake Drive at the proposed signalized intersection.							
	20. Halifax Transit should continue to plan for transit routing along Regency Park Drive between Washmill Lake Drive and Lacewood Drive.							

APPENDIX A TRAFFIC VOLUME DATA

									Parkland Drive				
	Tak								IHG				
Lacewood Drive @ Parkland Drive / Regency Park Drive						Lacew	J k L ood Drive		Ped 3 Ped 4 Pe Ped 1		F F D	·	
	Hali	How NO											
	PM Peak: Wedn	nesdav. June 21. 20	023						A B	c			
	AM Peak: Thur	sday, June 22, 202	23										
								R	egency Park D	rive			
	_			_	AM Pe	ak Period Vo	olume Data			-			
	Regency Park Drive					/e		Parkland Driv	e	_	Lacewood Driv	'e	Total
Time	No	rthbound Appro	bach	We	estbound Appro	bach -	Sou	uthbound App	oach	Ea	stbound Appro	bach	Vehicles
07:00 07:45	A	В	C	D	E	F	G	Н	1	J	K	L	000
07:00 07:15	24	5	21	24	30	4	41	12	39	13	39	11	200
07:30 07:45	17	10	20	22	52	4	30	7	20	19	64	12	326
07:45 08:00	27	8	21	27	63	14	32	7	33	25	85	23	365
08:00 08:15	28	9	25	35	57	15	38	13	36	25	68	23	372
08:15 08:30	21	2	29	23	71	29	36	11	33	22	69	32	378
08:30 08:45	22	9	43	17	48	22	27	23	29	17	83	41	381
08:45 09:00	38	8	13	18	83	30	21	17	47	17	75	41	408
AM Peak Hour	109	28	110	93	259	96	122	64	145	81	295	137	1539
07:00 08:00	83	30	106	85	190	28	145	36	136	70	244	58	1211
08:00 09:00	109	28	110	93	259	96	122	64	145	81	295	137	1539
		Ped 1			Ped 2			Ped 3			Ped 4		Total Peds
07:00 08:00		8			5			4			10		27
08:00 09:00		13			9			19			15		56
					PM Pe	ak Period Vo	lume Data						
	R	egency Park D	rive		Lacewood Driv	/e		Parkland Driv	e		Lacewood Driv	/e	
Time	No	rthbound Appro	oach	We	stbound Appro	bach	Sou	uthbound App	oach	Ea	stbound Appro	bach	Total
	А	В	С	D	E	F	G	Н	I	J	K	L	venicies
16:00 16:15	49	25	28	43	135	30	31	21	48	67	113	39	629
16:15 16:30	34	22	23	42	114	27	27	16	39	56	123	40	563
16:30 16:45	35	16	35	41	108	36	28	22	36	57	123	41	578
16:45 17:00	36	10	25	34	119	37	26	22	47	52	139	62	609
17:00 17:15	50	8	44	24	134	28	33	22	35	53	145	62	638
17:15 17:30	39	9	25	25	130	26	20	12	41	63	109	40	539
17:30 17:45	42	12	21	30	130	42	38	26	40	49	1/159	59	562
PM Peak Hour	167	38	121	119	513	133	117	72	163	217	552	223	2435
16:00 17:00	154	73	111	160	476	130	112	81	170	232	498	182	2379
17:00 18:00	157	40	116	107	492	119	124	76	143	234	561	219	2388
	1	Ped 1			Ped 2			Ped 3			Ped 4		Total Peds
16:00 17:00		19			6			23			10		58
17:00 18:00		17			3			12			14		46

Wa	Tab ashmill Bent	le A-2 Lake Drive @ ly Drive	e	К L	+	Washr ed 4 Ped 2 Ped 1	nill Lake Drive	E D
PM Pi AM I	Halii Peak: Wedne Peak: Thurs	<i>fax, NS</i> esday, June 21, 20 sday, June 22, 202	123 13		Bently	A C	•	
			AM Pea	ak Period Vo	lume Data			
Time		Bently Northbound	Drive d Approach	Washmill Westbound	ill Lake Drive Washmill Lake Drive und Approach Eastbound Approach			Total Vehicles
		A	U C	D	E	ĸ	L	
07:00 0	07:15	3	20	3	65	63	2	156
07:15 0	07:30	2	14	4	89	58	2	169
07:30 0	07:45	2	25	6	79	55	0	167
07:45 0	08:00	4	15	8	122	80	2	231
08:00 0	08:15	5	27	8	102	86	2	230
08:15 0	08:30	7	18	11	112	80	6	234
08:30 0	08:45	4	25	5	118	88	3	243
08:45 (09:00	3	8	8	126	64	3	212
AM Peak H	our	20	85	32	454	334	13	938
07:00 0	08:00	11	74	21	355	256	6	723
08:00 0	09:00	19	78	32	458	318	14	919
		Pe	d 1	Pe	d 2	Pe	d 4	Total Peds
07:00 0	08:00	7	7		4		0	11
08:00 0	09:00	6	6		5		0	11
			PM Poa	k Period Vo	lumo Data			
		Ronth	Drive	Washmill		W/achmill	l ake Drive	1
Time		Northbourg	Annroach	Weethour	Δnnroach	Faethound	Annroach	Total
rinte								Vehicles
16.00 1	16.15	<u>л</u>	11	15	159	17/	L Q	370
16.15	16.30	ч 2	7	16	161	150	5	3/0
16:30	16:45		16	10	161	181	6	378
16:45	17.00	- - 	8	20	174	100	a 0	413
17:00	17.00	4	10	21	153	219	9	416
17:15	17:30	4	13	19	147	169	7	359
17:30	17:45	3	13	17	144	163	13	353
17:45	18:00	5	18	14	170	147	8	362
PM Peak H	our	15	47	70	635	768	31	1566
16:00	17:00	14	42	61	654	704	28	1503
17:00	18:00	16	54	71	614	698	37	1490
			d 1	<u></u> Ро	d 2	Po	d 4	Total Pede
16:00 1	17:00		5		<u>-</u> 1		<u> </u>	6
17:00 1	18:00		2		3		0	5

APPENDIX B WARRANT ANALYSIS

PAGE B-1

2005 Canadian Traffic Signal Warrant Matrix Analysis
Table: B-2 - Washmill Lake Drive @ Regency Park Drive
2034 Future Background with Trips Diverted

Side Street (name) Regary Park Drive Direction (EW or NS) NS City: Hallfax, NS Lane Configuration 1	Main Street (name)	Wash	mill Lake	e Drive	Dir	ection (E	W or NS)	EW	EW Date: Ju		une 202	23								
Time Configuration Image: Transmitter in the second se	Side Street (name)	Rege	ncy Park	Drive	Dir	ection (E	W or NS)	NS		City:	I	Halifax, N	IS							
Lane Configuration I					ъĘ				2]									
Wahalil Lake Drive Wa Via degree Via deg	Lane Configuration		E	LT	ugh (8T+L	RT	RT	al (m	of Thu											
Washing Labe Drive 10 1 1 1 NB 1 1 NB 1 NB 1 NB 1 NB 1 No 1 No 1 No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No			Excl	Ъ&	Thro Th+F	Ъ&	Excl	UpSt	° 1 #											
Note to the set of the	Washmill Lake Drive	WB	щ		1	1	Н													
	Washmill Lake Drive	EB		1	1															
toric layer Sign in the interval of the		NB																		
Offser input Speed Tracks Bas Rt. Median Wathall Lake Drive EW 50 20% y 00 Regency Pub Erive Fed Fed3 Fed4 Fed3 Fed4 NS NS EW EW 50 20% y 00 7:00-800 Fed3 Fed4 Fed4 Fed4 Fed4 y 00 15:30-16:30 Fis4 Side Fis4 Side Fis4	Regency Park Drive	SB			1]												
Washmill Lake Drive IK S S Vy (m) Regrency Park Drive NS 50 20% y 1 Trive S Fred3 Fred3 Fred3 Fred3 Fred3 Fred3 Trive S Fred3	Other input		Speed	Trucks	Bus Rt	Median	7													
Wakiniii Lake DriveEW302.0%y0.0Regress Plack DriveNoPoint NoNoTraffic InputNoNoTraffic InputNoNoTraffic InputNoNoTraffic InputNoNoTraffic InputNoNoTraffic InputNoNoTraffic InputNoNoTraffic InputNoNoTraffic InputNoNoTraffic InputNo<			(Km/h)	%	(y/n)	(m)														
Negacy rate Link NS LOB 200	Washmill Lake Drive	EW	50	2.0%	У	0.0														
Pedi Pediation (y)) y 800 - 900 130 - 1230 130 - 1 1	Regency Fark Drive	IND	50	2.070	у		1													
$\frac{ NS }{1200 + 800} + \frac{ Stde }{1200 + 1300 + 1200 + 1200 + 1300 + 1200 + 1300 + 1200 + 1300 + 1200 + 1300 + 1200 + 1300 + 1200 + 1300 + 1200 + 1300 + 1200 + 1300 + 1200 + 1300 + 1200 + 1300 + 1200 + 1300 + 1200 + 1300 + 1200 + 1300 + 1200 + 1200 + 1300 + 120$		Ped1	Ped2	Ped3	Ped4]		Demogra	phics]							
7:00-8:00 WStek F. Site N Side S side 8:00-9:00 13:0 12:0 1 <td< td=""><td></td><td>NS</td><td>NS</td><td>EW</td><td>EW</td><td></td><td></td><td>Elementar</td><td>y School</td><td></td><td>(y/n)</td><td>у</td><td></td><td></td></td<>		NS	NS	EW	EW			Elementar	y School		(y/n)	у								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		W Side	E Side	N Side	S side			Senior's C	omplex		(y/n)	n								
$\frac{139}{1230} \cdot 1230 +$	7:00 - 8:00							Pathway to	o School		(y/n)	y	-							
$\frac{1220 \cdot 1320}{1530 \cdot 1630}$ $\frac{1}{1530 \cdot 1630}$ $\frac{1}{1530 \cdot 1630}$ $\frac{1}{1530 \cdot 1630}$ $\frac{1}{150 \cdot 1730}$ $\frac{1}{150 \cdot 1230}$	11:30 - 12:30					1		Central Bu	isiness Dist	rict	(#) (y/n)	y	1							
$\frac{1539 \cdot 1530}{1630 \cdot 1730} - \frac{1}{1630 \cdot 1230} - \frac{1}{1630 \cdot 1230 \cdot 1230 \cdot 1230 \cdot 1230} - \frac{1}{1630 \cdot 1230 \cdot 12$	12:30 - 13:30												-							
Number Number 0 0 0 0 Total (b-hour peak) 0 0 0 0 Traffic Input T Th RT LT Th	15:30 - 16:30					_														
Yurrage (6-hour Peak) 0 0 0 0 Traffic Input NB SB WB EB Traffic Input NB NE NU Traffic Input NB NE LT The RT NO 0 0 Adverage 6-hour Peak Turning The RT The RT ST Movements C Washmill Lake Drive C Washmill Lake Drive C TH TH The RT The RT The RE ST C <th <="" colspan="6" td=""><td>Total (6-hour neak)</td><td>0</td><td>0</td><td>0</td><td>0</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>Total (6-hour neak)</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						Total (6-hour neak)	0	0	0	0	-								
Traffic Input NB VB VB EB Traffic Input LT Th RT LT Th <td>Average (6-hour peak)</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Average (6-hour peak)	0	0	0	0															
NB VB EB 1 1 T 1 RT LT Th RT R						_														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T	1	ND			SD			WP			FD		٦						
Too 8.00 Di In Ki In	rame input	IТ	Th	рт	IT	JD Th	рт	IТ	Th	рт	IТ	ED Th	рт	-						
$\frac{1}{130} + \frac{1}{130} + \frac{1}$	7.00 8.00	0	0	KI	15	0	55	0	111	15	55	210	0	-						
$\frac{1}{1130 \cdot 12.30} = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =$	7:00 - 8:00	0	0	0	20	0	55	0	425	15	55	265	0	-						
$\frac{11230 \cdot 1230}{1230 \cdot 1630} = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =$	8:00 - 9:00	0	0	0	20	0	50	0	255	15	55	265	0	-						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11:30 - 12:30	0	0	0	10	0	50	0	333	15	55	303	0	-						
1530-1630 0	12:30 - 13:30	0	0	0	10	0	50	0	333	15	33	303	0	-						
0.000 17.50 0 0 0 100 <t< td=""><td>15:30 - 10:30</td><td>0</td><td>0</td><td>0</td><td>20</td><td>0</td><td>85</td><td>0</td><td>580</td><td>25</td><td>110</td><td>720</td><td>0</td><td>-</td></t<>	15:30 - 10:30	0	0	0	20	0	85	0	580	25	110	720	0	-						
Average (6-hour peak) 0 0 0 16 0 68 0 483 18 78 495 0 Average 6-hour Peak Turning Movements R R R R R R R R	Total (6-hour neak)	0	0	0	95	0	405	0	2.900	105	470	2.970	0	-						
Average 6-hour Peak Turning Movements x x x x x x x x	Average (6-hour peak)	0	0	0	16	0	68	0	483	18	78	495	0							
Washmill Lake Drive EB 573 TH 495 G	Average 6-ho Mov	ur Peal ement	k Turr s	ning _		l 83 SB]	Regency Pa Drive	NB North>	1										
$Washmill Lake Drive$ $EB \qquad 573 TH \\ RT \qquad 0 \qquad C \qquad C$				Ped	R R	Ē	E1	1	% ▲		•									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					89	0			\wedge		18	PT								
 WB 551 Washmill Lake Drive EB 573 TH 495 RT 0 EB 573 E E 573 TH 495 EB 573 TH 495 EB 573 TH 495 EB 573 TH 495 EB 573 TH 511 EB > 				ı .				,			10	. KI		-						
Washmill Lake Drive EB 573 TH 495 RT 0 1 T $EB >$ 1 $EB > 511$ $EB >1$ $EB > 511$ $EB >$	<	WB	551	\leftarrow			\rightarrow	—/			483	TH	501	WB						
$EB \qquad 573 \qquad TH \qquad 495 \qquad 0 \qquad C \qquad C$	Washmill Lake Drive			1				\times			0	IТ								
$EB \qquad \begin{bmatrix} LT \\ 78 \\ 495 \\ RT \\ 0 \\ 0 \\ 0 \\ 1 \\ EB \\ T \\ 0 \\ T \\ T$	washinin Lake Drive						\times				0	LI								
$EB \qquad 573 \qquad TH \qquad 495 \qquad \qquad$		_	LT	78			\rightarrow	\frown	\rightarrow	_			Washmi	ll Lake						
	EB	573	TH	495				\rightarrow			\rightarrow	511	EB	>						
						/	/			/	T									
			RT	0		/)		(Ļ									
						\mathbb{N}					·	1								
La La Contraction de la contra				¥		₩	-	0	J	J		J								
						•		LT	HT	RT	red2									
						-				1	Ŧ									

B 0

W = $[C_{bt}(X_{v-v}) / K_1 + (F(X_{v-p}) L) / K_2] \times C_i$ W = 39 39 0

NOT Warranted

Veh Ped

2005	Canadian Traffic Signal Warrant Matrix Analysis
	Table: B-1 - Washmill Lake Drive @ Regency Park Drive

Direction (EW or NS) EW

2034 Future with Site Generated Trips

Main Street (name)	Wash	Washmill Lake Drive Direction (EW or M				W or NS)	EW		Date:	J	une 202	3	
Side Street (name)	Rege	ncy Park	Drive	Dire	ection (EV	W or NS)	NS		City:	F	Ialifax, N	IS	
Lane Configuration		Excl LT	Th & LT	Through or Th+RT+LT	Th & RT	Excl RT	UpStream Signal (m)	# of Thru Lanes					
Washmill Lake Drive	WB		1		1		= 01						
Washmill Lake Drive	EB		1		1								
Site Access #3	NB			1									
Regency Park Drive	SB			1									
Other input		Speed (Km/h)	Trucks	Bus Rt (y/n)	Median (m)								
Washmill Lake Drive	EW	50	2.0%	(j/ii) y	0.0								
Regency Park Drive	NS	50	2.0%	у									
	Dod1	Dod 2	Dod 2	Dod4	1	1	Domogram	hia				1	
	NS	NS	FW	FW			Elomontor	v Sahaal		(11/10)			
	W Side	E Side	N Side	S side			Senior's Co	omplex		(y/n) (y/n)	n	•	
7:00 - 8:00							Pathway to	School		(y/n)	у		
8:00 - 9:00							Metro Area	a Population	n	(#)	500,000	-	
11:30 - 12:30							Central Bu	siness Disti	ict	(y/n)	У	1	
15:30 - 16:30													
16:30 - 17:30	0	0	0										
Total (6-hour peak)	0	0	0	0									
interage (o nour peak)	Ū	Ū	Ū	Ū	1								
r		NID		1	C D		1	1170			ED		
Traffic Input		NB			SB			WB			EB	D.T.	
T 00 0 00	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	
7:00 - 8:00	10	30	15	95	20	105	10	430	70	95	320	10	
8:00 - 9:00	10	20	20	00	20	95	10	245	80	00	373	10	
12:30 - 13:30	5	20	15	90	15	85	15	365	85	90	370	5	
15:30 - 16:30	10	35	30	185	35	160	30	700	200	195	860	10	
16:30 - 17:30	10	30	25	155	30	135	25	595	170	165	735	10	
Total (6-hour peak)	50	170	120	725	135	690	105	2,965	690	745	3,030	50	
Average (6-hour peak)	8	28	20	121	23	115	18	494	115	124	505	8	
Average 6-hou Mov	ır Peal ements	k Turn s	ing		258 SB		Regency Par Drive	NB North>	I				
			0 Ped1	- 115 RT	- 23 TH	- 121 LT		268		•	1		
			0 Ped1	115 RT	23 TH	//		268		115	RT		
<	WB	618	0 Ped1	115 RT	23 TH	121		268		115 494	RT TH	627	WB
< Washmill Lake Drive	WB	618	0 Ped1	115 RT	23 TH	121 L1		268		 115 494 18 	RT TH LT	627	WB
< Washmill Lake Drive	WB	618 LT	Грэд О 124	115 RT	23 TH	121		268		 1115 494 18 	RT TH LT	627 Washmill	WB Lake Drive
< Washmill Lake Drive EB	WB 638	618 LT TH	Ipad 0 124 505	115 RT	23 TH	121 11		268		1115 494 18	RT TH LT 646	627 Washmill EB	WB Lake Drive >
< Washmill Lake Drive EB	WB 638	618 LT TH RT	124 505 8	115 RT	23 TH	121		268		115 494 18	RT TH LT 646	627 Washmill EB	WB Lake Drive >
< Washmill Lake Drive EB	WB 638	618 LT TH RT	1793 0 124 505 8	115 RT	23 TH	121 13	8	268		115 494 18	RT TH LT • 646	627 Washmill EB	WB Lake Drive >
< Washmill Lake Drive EB	WB 638	618 LT TH RT	124 505 8	115 RT	TH	121 11	8	28	20	1115 494 18	RT TH LT 646	627 Washmill EB	WB Lake Drive >
< Washmill Lake Drive EB	WB 638	618 LT TH RT	1794 0 124 505 8	115 RT	48 4 23 TH	121 11	LT 8	TH 28	RT 20	 115 494 18 0 CPpad 	RT TH LT • 646	627 Washmill EB	WB Lake Drive >
< Washmill Lake Drive EB	WB 638	618 LT TH RT	1124 505 8	115 RT	SB 48	121 13	LT 8	57 TH 28	RT 20	115 494 18	RT TH LT 646	627 Washmill EB	WB Lake Drive >
< Washmill Lake Drive EB	WB	618 LT TH RT	1124 505 8	Sit	HI 57 58 58 58 58 58 58 58 58 58 58	5#3	LT 8	NB 57 TH 28	RT 20	115 494 18 0 CDPa	RT TH LT 646	627 Washmill EB	WB Lake Drive >
< Washmill Lake Drive EB	WB	618 LT TH RT	1124 505 8	Sit		5#3 	8 Li + (F ()	T NB 57 TH 28	07 12) / K ₂]	115 494 18	RT TH LT 646	627 Washmill EB	WB Lake Drive >
< Washmill Lake Drive EB	WB 638	618 LT TH RT	1794 0 124 505 8 4	Sit		H^{1}	× ±1 + (F ()	807 807 HL 45 80 80 81 84	07 L2) / K ₂] 184	115 494 18 • • • • • • • • • • • • • • • • • • •	RT TH LT 646	627 Washmill EB	WB Lake Drive >
< Washmill Lake Drive EB	WB	LT TH RT	Град. С 124 505 8 4 4 4 505	Site W = [1		5 #3 $W = W$	× + (F ()	87 87 87 87 87 87 87 87 87 87 87 87 87 8	07 L2) / K ₂] 184 Veh	115 494 18 • • • • • • • • • • • • • • • •	RT TH LT 646	627 Washmill EB	WB Lake Drive >

NCHRP 684 Internal Trip Capture Estimation Tool										
Project Name:	Mainland Common		Organization:	WSP						
Project Location:	Regency Park Drive		Performed By:	Brianna Rietzel						
Scenario Description:	AM Peak Hour		Date:	2023-06-26						
Analysis Year:	2034		Checked By:							
Analysis Period:	AM Street Peak Hour		Date:							

	Table 1	-A: Base Vehicl	le-Trip Generation	Estim	ates (Single-Use S	Site Estimate)				
Land Use	Developme	ent Data (<i>For Inf</i>	ormation Only)		Estimated Vehicle-Trips ³					
	ITE LUCs ¹	Quantity	Units		Total	Entering	Exiting			
Office					0					
Retail					248	154	94			
Restaurant					0					
Cinema/Entertainment					0					
Residential					670	216	454			
Hotel					0					
All Other Land Uses ²					0					
					918	370	548			

				_							
Table 2-A: Mode Split and Vehicle Occupancy Estimates											
		Entering Trip	os	1	Exiting Trips						
Land Use	Veh. Occ.4	% Transit	% Non-Motorized	1	Veh. Occ.4	% Transit	% Non-Motorized				
Office	1.27			1	1.27						
Retail	1.27			1	1.27						
Restaurant	1.27			1	1.27						
Cinema/Entertainment	1.27			 	1.27						
Residential	1.27			1	1.27						
Hotel	1.27			1	1.27						
All Other Land Uses ²	1.27			1	1.27						

Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)											
Origin (From)		Destination (To)									
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office											
Retail											
Restaurant											
Cinema/Entertainment											
Residential											
Hotel											

Table 4-A: Internal Person-Trip Origin-Destination Matrix*											
Origin (From)	Destination (To)										
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		0	0	0	0	0					
Retail	0		0	0	5	0					
Restaurant	0	0		0	0	0					
Cinema/Entertainment	0	0	0		0	0					
Residential	0	6	0	0		0					
Hotel	0	0	0	0	0						

Table 5-A	: Computatio	ns Summary		Table 6-A: Internal Trip Capture Percentages by Land Use				
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips		
All Person-Trips	1,166	470	696	Office	N/A	N/A		
Internal Capture Percentage	2%	2%	2%	Retail	3%	4%		
				Restaurant	N/A	N/A		
External Vehicle-Trips ⁵	902	362	540	Cinema/Entertainment	N/A	N/A		
External Transit-Trips ⁶	0	0	0	Residential	2%	1%		
External Non-Motorized Trips ⁶	0	0	0	Hotel	N/A	N/A		

¹ Land Use Codes (LUCs) from <i>Trip Generation Manual</i> , published by the Institute of Transportation Engineers.
² Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.
³ Enter trips assuming no transit or non-motorized trips (as assumed in ITE <i>Trip Generation Manual</i>).
⁴ Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.
⁵ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A.
⁶ Person-Trips
*Indicates computation that has been rounded to the nearest whole number.
Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

Page B-4

	NCHRP 684 Internal Trip Capture Estimation Tool										
Project Name:	Mainland Common		Organization:	WSP							
Project Location:	Regency Park Drive		Performed By:	Brianna Rietzel							
Scenario Description:	PM Peak Hour		Date:	2023-06-26							
Analysis Year:	2034		Checked By:								
Analysis Period:	PM Street Peak Hour		Date:								

	Table 1-P: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)											
	Developme	ent Data (<i>For In</i>	formation Only)		Estimated Vehicle-Trips ³							
Land Ose	ITE LUCs ¹	Quantity	Units		Total	Entering	Exiting					
Office					0							
Retail					804	386	418					
Restaurant					0							
Cinema/Entertainment					0							
Residential					768	438	330					
Hotel					0							
All Other Land Uses ²					0							
					1,572	824	748					

	Table 2-P: Mode Split and Vehicle Occupancy Estimates												
		Entering Tri	ips			Exiting Trips							
Lanu Ose	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ. ⁴	% Transit	% Non-Motorized						
Office	1.27				1.27								
Retail	1.27				1.27								
Restaurant	1.27				1.27								
Cinema/Entertainment	1.27				1.27								
Residential	1.27				1.27								
Hotel	1.27				1.27								
All Other Land Uses ²	1.27				1.27								

	Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)												
Origin (From)		Destination (To)											
Ongin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel							
Office													
Retail					1000								
Restaurant													
Cinema/Entertainment													
Residential		1000											
Hotel													

	Table 4-P: Internal Person-Trip Origin-Destination Matrix*												
Origin (From)				Destination (To)									
Oligili (FIOIII)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel							
Office		0	0	0	0	0							
Retail	0		0	0	128	0							
Restaurant	0	0		0	0	0							
Cinema/Entertainment	0	0	0		0	0							
Residential	0	37	0	0		0							
Hotel	0	0	0	0	0								

Table 5-P	: Computatio	ns Summary		Table 6-P: Internal Trip Capture Percentages by Land Use			
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips	
All Person-Trips	1,996	1,046	950	Office	N/A	N/A	
Internal Capture Percentage	17%	16%	17%	Retail	8%	24%	
				Restaurant	N/A	N/A	
External Vehicle-Trips ⁵	1,312	694	618	Cinema/Entertainment	N/A	N/A	
External Transit-Trips ⁶	0	0	0	Residential	23%	9%	
External Non-Motorized Trips ⁶	0	0	0	Hotel	N/A	N/A	

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers. ²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator. ³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*). ⁴Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be ⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P. ⁶Person-Trips *Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

APPENDIX

INTERSECTION PERFORMANCE ANALYSIS

Page C-1 AM Future Background

	٦	-	\mathbf{r}	4	←	*	1	t	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	- N	* *	1	- N	- † †	1	<u></u>	•	1	- N	↑	1
Traffic Volume (vph)	85	311	145	98	273	101	115	30	116	129	68	153
Future Volume (vph)	85	311	145	98	273	101	115	30	116	129	68	153
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.570			0.487			0.709			0.736		
Satd. Flow (perm)	1062	3539	1583	907	3539	1583	1321	1863	1583	1371	1863	1583
Satd. Flow (RTOR)			101			88			126			166
Lane Group Flow (vph)	92	338	158	107	297	110	125	33	126	140	74	166
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases		6		5	2			4			8	
Permitted Phases	6		6	2		2	4		4	8		8
Total Split (s)	14.0	37.0	37.0	16.0	39.0	39.0	37.0	37.0	37.0	37.0	37.0	37.0
Total Lost Time (s)	4.0	6.3	6.3	4.0	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3
Act Effct Green (s)	20.7	12.7	12.7	22.1	15.3	15.3	10.3	10.3	10.3	10.3	10.3	10.3
Actuated g/C Ratio	0.46	0.28	0.28	0.49	0.34	0.34	0.23	0.23	0.23	0.23	0.23	0.23
v/c Ratio	0.15	0.34	0.30	0.18	0.25	0.18	0.41	0.08	0.27	0.45	0.17	0.34
Control Delay	6.4	15.7	8.9	6.4	13.7	6.7	20.7	15.1	5.6	21.2	16.1	5.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	6.4	15.7	8.9	6.4	13.7	6.7	20.7	15.1	5.6	21.2	16.1	5.6
LOS	А	В	А	А	В	А	С	В	А	С	В	А
Approach Delay		12.4			10.7			13.4			13.4	
Approach LOS		В			В			В			В	
Queue Length 50th (m)	3.1	12.0	3.6	3.6	10.4	1.4	9.1	2.2	0.0	10.3	5.1	0.0
Queue Length 95th (m)	9.5	25.3	17.1	10.8	21.7	11.3	23.1	7.9	10.1	25.3	14.2	11.5
Internal Link Dist (m)		125.4			242.6			314.2			320.2	
Turn Bay Length (m)	55.0		7.0	50.0		7.0	35.0		7.0	35.0		7.0
Base Capacity (vph)	698	2501	1148	720	2640	1203	933	1316	1156	969	1316	1167
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.13	0.14	0.14	0.15	0.11	0.09	0.13	0.03	0.11	0.14	0.06	0.14
Intersection Summary Cycle Length: 90 Actuated Cycle Length: 44.9 Control Type: Actuated-Unco Maximum v/c Ratio: 0.45 Intersection Signal Delay: 12 Intersection Capacity Utilizat Analysis Period (min) 15	bordinated 2.3 ion 43.5%			In IC	itersection CU Level (n LOS: B of Service	e A					

▶ _{Ø1} ♥ _{Ø2}								
14 s	39	S		37 s				
Ø5		↔ _{Ø6}			Ø8			
16 s		37 s			37 s			

	۶	-	\mathbf{r}	4	←	•	1	1	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	*	1	<u>5</u>	- † †	1	<u></u>	•	1	<u> </u>	↑	1
Traffic Volume (vph)	229	582	235	126	541	140	176	40	128	123	76	172
Future Volume (vph)	229	582	235	126	541	140	176	40	128	123	76	172
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.341			0.412			0.703			0.729		
Satd. Flow (perm)	635	3539	1583	767	3539	1583	1310	1863	1583	1358	1863	1583
Satd. Flow (RTOR)			90			88			139			187
Lane Group Flow (vph)	249	633	255	137	588	152	191	43	139	134	83	187
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases	6		6	2		2	4		4	8		8
Total Split (s)	13.0	39.0	39.0	13.0	39.0	39.0	38.0	38.0	38.0	38.0	38.0	38.0
Total Lost Time (s)	4.0	6.3	6.3	4.0	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3
Act Effct Green (s)	29.0	19.8	19.8	26.9	16.4	16.4	13.8	13.8	13.8	13.8	13.8	13.8
Actuated g/C Ratio	0.52	0.35	0.35	0.48	0.29	0.29	0.25	0.25	0.25	0.25	0.25	0.25
v/c Ratio	0.50	0.51	0.41	0.27	0.57	0.29	0.59	0.09	0.28	0.40	0.18	0.35
Control Delay	10.9	18.0	13.3	8.3	19.6	9.6	27.6	17.6	5.7	22.4	18.4	5.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	10.9	18.0	13.3	8.3	19.6	9.6	27.6	17.6	5.7	22.4	18.4	5.5
LOS	В	В	В	А	В	А	С	В	Α	С	В	А
Approach Delay		15.4			16.1			18.3			13.8	
Approach LOS		В			В			В			В	
Queue Length 50th (m)	11.5	29.0	13.2	5.9	27.4	4.9	17.3	3.4	0.0	11.5	6.7	0.0
Queue Length 95th (m)	29.2	53.0	36.3	16.7	48.9	18.6	41.0	11.1	11.5	28.9	18.3	13.2
Internal Link Dist (m)		125.4			242.6			314.2			320.2	
Turn Bay Length (m)	55.0		7.0	50.0		7.0	35.0		7.0	35.0		7.0
Base Capacity (vph)	517	2130	988	550	2130	987	764	1087	981	792	1087	1001
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.48	0.30	0.26	0.25	0.28	0.15	0.25	0.04	0.14	0.17	0.08	0.19
Intersection Summary Cycle Length: 90 Actuated Cycle Length: 56 Control Type: Actuated-Unco Maximum v/c Ratio: 0.59 Intersection Signal Delay: 15 Intersection Capacity Utilizati Analysis Period (min) 15	ordinated .8 ion 57.9%)		In IC	itersection CU Level (n LOS: B of Service	e B					

∕ Ø1	∲ ♥ Ø2	₩ø4	
13 s	39 s	38 s	
√ Ø5	↓ Ø6	↓ ∞8	
13 s	39 s	38 s	

Page C-3 AM Future Background - Diversions

	≯	-	\mathbf{r}	4	←	*	1	1	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	1	<u> </u>	*	1	<u> </u>	↑	1	<u> </u>	•	1
Traffic Volume (vph)	68	279	124	123	248	95	98	52	140	124	108	124
Future Volume (vph)	68	279	124	123	248	95	98	52	140	124	108	124
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.585			0.484			0.682			0.720		
Satd. Flow (perm)	1090	3539	1583	902	3539	1583	1270	1863	1583	1341	1863	1583
Satd. Flow (RTOR)			97			88			152			131
Lane Group Flow (vph)	74	303	135	134	270	103	107	57	152	135	117	135
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases	6		6	2		2	4		4	8		8
Total Split (s)	14.0	37.0	37.0	16.0	39.0	39.0	37.0	37.0	37.0	37.0	37.0	37.0
Total Lost Time (s)	4.0	6.3	6.3	4.0	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3
Act Effct Green (s)	20.3	12.5	12.5	22.7	15.6	15.6	10.2	10.2	10.2	10.2	10.2	10.2
Actuated g/C Ratio	0.45	0.28	0.28	0.50	0.35	0.35	0.23	0.23	0.23	0.23	0.23	0.23
v/c Ratio	0.12	0.31	0.27	0.22	0.22	0.17	0.37	0.14	0.32	0.44	0.28	0.29
Control Delay	6.2	16.0	8.4	6.5	13.3	6.2	20.0	15.8	5.7	21.3	17.4	6.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I otal Delay	6.2	16.0	8.4	6.5	13.3	6.2	20.0	15.8	5.7	21.3	17.4	6.0
LOS	A	В	A	A	В	A	С	В	A	С	В	A
Approach Delay		12.6			10.1			12.4			14.8	
Approach LOS	0.5	В			В		7.0	В			В	
Queue Length 50th (m)	2.5	10.8	2.4	4.6	9.4	0.9	7.8	3.9	0.0	10.1	8.4	0.3
Queue Length 95th (m)	8.0	23.3	14.7	12.9	19.6	10.2	20.0	11.5	10.9	24.3	20.2	10.7
Internal Link Dist (m)	FF 0	125.4	7.0	50.0	242.6	7.0	25.0	314.2	7.0	25.0	320.2	7.0
Turn Bay Length (m)	55.0	2407	1.0	50.0	0/05	7.0	35.0	1014	1.0	35.0	1014	1.0
Base Capacity (vpn)	698	2496	1145	123	2635	1201	896	1314	1161	946	1314	1155
Starvation Cap Reductin	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductin	0	0	0	0	0	0	0	0	0	0	0	0
Slorage Cap Reduction	0 11	0 1 2	0 1 2	0 10	0 10	0 00	0 1 2	0.04	0 12	0 14	0 00	0 1 2
Reduced V/C Rallo	0.11	0.12	0.12	0.19	0.10	0.09	0.12	0.04	0.13	0.14	0.09	0.12
Intersection Summary Cycle Length: 90 Actuated Cycle Length: 45 Control Type: Actuated-Unco Maximum v/c Ratio: 0.44 Intersection Signal Delay: 12 Intersection Capacity Utilizat Analysis Period (min) 15	bordinated 2.3 ion 44.2%			In IC	itersection CU Level (n LOS: B of Service	e A					

	•	Ø2		✓ Ø4	
14 s	39	s		37 s	
Ø5		÷26		Ø8	
16 s		37 s		37 s	

Appendix C - Intersection Performance Analysis 2: Washmill Lake Drive & Regency Park Drive

	≯	-	-	•	1	∢
Movement Lane Configurations	EBL	EBT ♠♠	WBT ≜∱	WBR	SBL	SBR
Traffic Volume (veh/h)	63	365	500	17	18	64
Future Volume (Veh/h)	63	365	500	17	18	64
Sian Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	68	397	543	18	20	70
Pedestrians	00	077	010	10	20	10
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)		None	None			
Unstream signal (m)						
nX platoon unblocked						
vC conflicting volume	561				886	280
vC1 stage 1 conf vol	501				000	200
vC2 stage 2 conf vol						
	561				886	280
tC single (s)	<i>1 1</i>				6.8	69
tC_{1} single (3) tC_{2} stars (s)	т. і				0.0	0.7
tE(c)	2.2				35	2 2
n queue free %	03				02	0.0 00
cM capacity (veb/b)	1006				72 265	70
	1000				205	/ 1/
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	SB 1
Volume Lotal	68	198	198	362	199	90
Volume Left	68	0	0	0	0	20
Volume Right	0	0	0	0	18	/0
cSH	1006	1/00	1/00	1/00	1/00	519
Volume to Capacity	0.07	0.12	0.12	0.21	0.12	0.17
Queue Length 95th (m)	1.7	0.0	0.0	0.0	0.0	5.0
Control Delay (s)	8.8	0.0	0.0	0.0	0.0	13.4
Lane LOS	А					В
Approach Delay (s)	1.3			0.0		13.4
Approach LOS						В
Intersection Summary						
Average Delay			1.6			
Intersection Capacity Utilizat	ion		32.8%	IC	CU Level o	of Service
Analysis Period (min)			15			

А

Page C-5 PM Future Background - Diversions

	٦	-	\mathbf{r}	•	-	•	1	Ť	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	- N	* *	1	<u>۲</u>	*	1	<u>5</u>	↑	1	- N	↑	1
Traffic Volume (vph)	184	522	200	173	486	133	149	93	181	119	115	136
Future Volume (vph)	184	522	200	173	486	133	149	93	181	119	115	136
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.446			0.399			0.677			0.692		
Satd. Flow (perm)	831	3539	1583	743	3539	1583	1261	1863	1583	1289	1863	1583
Satd. Flow (RTOR)			88			88			197			137
Lane Group Flow (vph)	200	567	217	188	528	145	162	101	197	129	125	148
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases	6		6	2		2	4		4	8		8
Total Split (s)	13.0	39.0	39.0	13.0	39.0	39.0	38.0	38.0	38.0	38.0	38.0	38.0
Total Lost Time (s)	4.0	6.3	6.3	4.0	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3
Act Effct Green (s)	25.8	15.2	15.2	26.1	15.3	15.3	12.6	12.6	12.6	12.6	12.6	12.6
Actuated g/C Ratio	0.48	0.29	0.29	0.49	0.29	0.29	0.24	0.24	0.24	0.24	0.24	0.24
v/c Ratio	0.36	0.56	0.42	0.36	0.52	0.28	0.55	0.23	0.38	0.42	0.28	0.31
Control Delay	8.7	19.3	13.0	8.7	18.6	9.2	25.9	18.3	5.6	22.6	18.9	6.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	8.7	19.3	13.0	8.7	18.6	9.2	25.9	18.3	5.6	22.6	18.9	6.5
LOS	А	В	В	А	В	А	С	В	А	С	В	А
Approach Delay		15.7			14.8			15.5			15.5	
Approach LOS		В			В			В			В	
Queue Length 50th (m)	8.3	25.1	9.9	7.7	22.8	4.1	14.1	8.1	0.0	10.9	10.2	0.9
Queue Length 95th (m)	22.4	45.9	29.0	21.2	42.6	17.3	33.4	20.4	13.1	26.7	24.3	12.7
Internal Link Dist (m)		125.4			242.6			314.2			320.2	
Turn Bay Length (m)	55.0		7.0	50.0		7.0	35.0		7.0	35.0		7.0
Base Capacity (vph)	580	2230	1029	553	2230	1029	770	1137	1043	787	1137	1020
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.34	0.25	0.21	0.34	0.24	0.14	0.21	0.09	0.19	0.16	0.11	0.15
Intersection Summary Cycle Length: 90 Actuated Cycle Length: 53.2 Control Type: Actuated-Unco Maximum v/c Ratio: 0.56 Intersection Signal Delay: 15 Intersection Capacity Utilizat Analysis Period (min) 15	bordinated 5.4 Vion 52.8%			In IC	tersection CU Level (n LOS: B of Service	e A					

∕× _{Ø1}	∲ Ø2	№ 4	
13 s	39 s	38 s	
√ Ø5	↓ Ø6	₽ Ø8	
13 s	39 s	38 s	

Appendix C - Intersection Performance Analysis 2: Washmill Lake Drive & Regency Park Drive

	≯	-	-	•	1	∢
Movement Lane Configurations	EBL	EBT	WBT	WBR	SBL	SBR
Traffic Volume (veh/h)	128	845	685	25	22	99
Future Volume (Veh/h)	128	845	685	25	22	99
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	139	918	745	27	24	108
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	772				1496	386
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	772				1496	386
tC, single (s)	4.1				6.8	6.9
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	83				75	82
cM capacity (veh/h)	839				95	612
Direction. Lane #	FB 1	FB 2	FB 3	WB 1	WB 2	SB 1
Volume Total	139	459	459	497	275	132
Volume Left	139	0	0	0	0	24
Volume Right	0	0	0	0	27	108
cSH	839	1700	1700	1700	1700	307
Volume to Capacity	0.17	0.27	0.27	0.29	0.16	0.43
Oueue I ength 95th (m)	4.7	0.0	0.0	0.0	0.0	16.5
Control Delay (s)	10.1	0.0	0.0	0.0	0.0	25.3
Lane LOS	B	0.0	0.0	0.0	0.0	D
Approach Delay (s)	13			0.0		25.3
Approach LOS	1.0			0.0		D
Intersection Summary			_			
Average Delay			2.4			
Intersection Capacity Utilization	on		44.1%	IC	CU Level o	of Service
Analysis Period (min)			15			

А

	٠	-	7	1	←	*	1	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	* *	1	7	† †	1	5	•	1	7	•	1
Traffic Volume (vph)	68	279	202	188	248	95	214	75	248	124	124	124
Future Volume (vph)	68	279	202	188	248	95	214	75	248	124	124	124
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.585			0.446			0.671			0.704		
Satd. Flow (perm)	1063	3539	1497	812	3539	1497	1231	1863	1536	1290	1863	1536
Satd. Flow (RTOR)			157			88			270			114
Lane Group Flow (vph)	74	303	220	204	270	103	233	82	270	135	135	135
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases	6		6	2		2	4		4	8		8
Total Split (s)	14.0	37.0	37.0	16.0	39.0	39.0	37.0	37.0	37.0	37.0	37.0	37.0
Total Lost Time (s)	4.0	6.3	6.3	4.0	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3
Act Effct Green (s)	22.9	13.0	13.0	29.1	20.6	20.6	16.0	16.0	16.0	16.0	16.0	16.0
Actuated g/C Ratio	0.41	0.23	0.23	0.52	0.37	0.37	0.29	0.29	0.29	0.29	0.29	0.29
v/c Ratio	0.14	0.37	0.47	0.34	0.21	0.17	0.67	0.15	0.43	0.37	0.25	0.26
Control Delay	9.2	21.3	11.5	10.2	16.2	7.3	27.8	15.6	4.7	19.1	16.6	6.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	9.2	21.3	11.5	10.2	16.2	7.3	27.8	15.6	4.7	19.1	16.6	6.3
LOS	А	С	В	В	В	Α	С	В	Α	В	В	Α
Approach Delay		16.2			12.5			15.4			14.0	
Approach LOS		В			В			В			В	
Queue Length 50th (m)	3.4	13.8	5.2	10.0	11.2	1.1	20.7	6.2	0.0	10.9	10.5	1.5
Queue Length 95th (m)	11.6	29.6	25.2	27.7	25.1	12.2	45.8	16.0	14.1	26.0	24.2	12.3
Internal Link Dist (m)		125.4			242.6			314.2			320.2	
Turn Bay Length (m)	55.0		7.0	50.0		7.0	35.0		7.0	35.0		7.0
Base Capacity (vph)	614	1987	909	635	2117	930	691	1046	981	724	1046	912
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.12	0.15	0.24	0.32	0.13	0.11	0.34	0.08	0.28	0.19	0.13	0.15
Intersection Summary												
Actuated Cycle Length: 56												
Control Type: Actuated-Unco	ordinated											
Maximum v/c Ratio: 0.67	Sorumatoa											
Intersection Signal Delay: 14	16			In	tersection	1 LOS' B						
Intersection Capacity Utilizat	tion 64 8%			10	CU Level (of Service	C					
Analysis Period (min) 15												

▶ _{Ø1}	€ Ø2	1 04
14 s	39 s	37 s
√ Ø5	₩ 06	↓ Ø8
16 s	37 s	37 s

Appendix C - Intersection Performance Analysis 2: Access #3/Regency Park Drive & Washmill Lake Drive

	٠	-	7	*	-	*	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	↑ Ъ		5	↑ Ъ			4.		5	Þ	
Traffic Volume (vph)	117	375	4	9	509	85	9	34	19	121	16	127
Future Volume (vph)	117	375	4	9	509	85	9	34	19	121	16	127
Satd. Flow (prot)	1770	3534	0	1770	3447	0	0	1760	0	1770	1582	0
Flt Permitted	0.334			0.510				0.921		0.713		
Satd. Flow (perm)	619	3534	0	941	3447	0	0	1631	0	1316	1582	0
Satd. Flow (RTOR)		2			33			21			138	
Lane Group Flow (vph)	127	412	0	10	645	0	0	68	0	132	155	0
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8			4		
Total Split (s)	11.0	36.0		25.0	25.0		24.0	24.0		24.0	24.0	
Total Lost Time (s)	3.0	6.0		6.0	6.0			6.0		6.0	6.0	
Act Effct Green (s)	29.0	27.8		19.8	19.8			10.0		10.1	10.1	
Actuated g/C Ratio	0.65	0.62		0.44	0.44			0.22		0.22	0.22	
v/c Ratio	0.21	0.19		0.02	0.42			0.18		0.44	0.33	
Control Delay	5.9	6.3		13.0	13.8			13.2		22.0	7.0	
Queue Delay	0.0	0.0		0.0	0.0			0.0		0.0	0.0	
Total Delay	5.9	6.3		13.0	13.8			13.2		22.0	7.0	
LOS	А	А		В	В			В		С	А	
Approach Delay		6.2			13.8			13.2			13.9	
Approach LOS		Α			В			В			В	
Queue Length 50th (m)	3.9	8.6		0.6	23.3			3.3		9.9	1.2	
Queue Length 95th (m)	11.9	18.6		3.5	43.1			12.0		25.1	13.0	
Internal Link Dist (m)		518.2			383.0			43.2			572.0	
Turn Bay Length (m)	50.0			15.0						25.0		
Base Capacity (vph)	618	2458		483	1787			709		562	755	
Starvation Cap Reductn	0	0		0	0			0		0	0	
Spillback Cap Reductn	0	0		0	0			0		0	0	
Storage Cap Reductn	0	0		0	0			0		0	0	
Reduced v/c Ratio	0.21	0.17		0.02	0.36			0.10		0.23	0.21	
Intersection Summary Cycle Length: 60 Actuated Cycle Length: 44.9 Control Type: Semi Act-Unco Maximum v/c Ratio: 0.44 Intersection Signal Delay: 11 Intersection Capacity Utilizat Analysis Period (min) 15	oord .2 ion 50.6%			In IC	tersectior CU Level o	n LOS: B of Service	A					

Splits and Phases: 2: Access #3/Regency Park Drive & Washmill Lake Drive

∠4 _{Ø2}		▼ Ø4
36 s		24 s
▶ Ø5	₩ Ø6	≪ † ø8
11 s	25 s	24 s

	٠	-	7	1	←	*	1	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	**	1	٦	**	1	7	1	1	5	+	1
Traffic Volume (vph)	184	522	347	261	486	133	279	119	259	119	144	136
Future Volume (vph)	184	522	347	261	486	133	279	119	259	119	144	136
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.456			0.303			0.657			0.674		
Satd. Flow (perm)	835	3539	1497	558	3539	1497	1206	1863	1536	1236	1863	1536
Satd. Flow (RTOR)			135			88			262			113
Lane Group Flow (vph)	200	567	377	284	528	145	303	129	282	129	157	148
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases	6		6	2		2	4		4	8		8
Total Split (s)	13.0	33.0	33.0	17.0	37.0	37.0	40.0	40.0	40.0	40.0	40.0	40.0
Total Lost Time (s)	4.0	6.3	6.3	4.0	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3
Act Effct Green (s)	30.5	19.3	19.3	36.6	22.4	22.4	23.1	23.1	23.1	23.1	23.1	23.1
Actuated g/C Ratio	0.43	0.27	0.27	0.51	0.31	0.31	0.32	0.32	0.32	0.32	0.32	0.32
v/c Ratio	0.43	0.59	0.75	0.59	0.48	0.28	0.78	0.22	0.42	0.32	0.26	0.26
Control Delay	14.1	26.7	26.8	16.3	22.2	10.8	38.0	19.5	5.6	21.8	19.9	7.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	14.1	26.7	26.8	16.3	22.2	10.8	38.0	19.5	5.6	21.8	19.9	7.7
LOS	В	С	С	В	С	В	D	В	А	С	В	Α
Approach Delay		24.5			18.7			21.9			16.3	
Approach LOS		С			В			С			В	
Queue Length 50th (m)	14.3	37.7	32.0	21.4	31.8	5.8	38.4	13.2	1.9	13.6	16.2	3.4
Queue Length 95th (m)	32.0	62.1	72.7	45.6	53.4	20.6	76.3	28.2	18.5	30.3	33.5	16.6
Internal Link Dist (m)		125.4			242.6			314.2			320.2	
Turn Bay Length (m)	55.0		7.0	50.0		7.0	35.0		7.0	35.0		7.0
Base Capacity (vph)	487	1390	670	525	1598	724	598	923	893	612	923	818
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.41	0.41	0.56	0.54	0.33	0.20	0.51	0.14	0.32	0.21	0.17	0.18
Intersection Summary Cycle Length: 90 Actuated Cycle Length: 71.7 Control Type: Actuated-Unc Maximum v/c Ratio: 0.78 Intersection Signal Delay: 2 Intersection Capacity Utiliza Analysis Period (min) 15	7 oordinated 1.1 tion 75.8%			lr IC	itersectior CU Level (n LOS: C of Service	• D					

Ø1	₩ Ø2	™ Ø4	
13 s	37 s	40 s	
Ø5	₩ Ø6	Ø8	
17 s	33 s	40 s	

Appendix C - Intersection Performance Analysis 2: Access #3/Regency Park Drive & Washmill Lake Drive

	٨	-	7	*	-	*	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	† 1 ₂		7	† Ъ			4.		5	1.	
Traffic Volume (vph)	199	862	7	18	703	213	6	19	17	187	21	161
Future Volume (vph)	199	862	7	18	703	213	6	19	17	187	21	161
Satd. Flow (prot)	1770	3534	0	1770	3377	0	0	1730	0	1770	1573	0
Flt Permitted	0.158			0.303				0.939		0.727		
Satd. Flow (perm)	293	3534	0	560	3377	0	0	1634	0	1332	1573	0
Satd. Flow (RTOR)		2			68			18			175	
Lane Group Flow (vph)	216	945	0	20	996	0	0	46	0	203	198	0
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8			4		
Total Split (s)	12.0	46.0		34.0	34.0		24.0	24.0		24.0	24.0	
Total Lost Time (s)	3.0	6.0		6.0	6.0			6.0		6.0	6.0	
Act Effct Green (s)	37.2	34.1		22.2	22.2			13.6		13.6	13.6	
Actuated g/C Ratio	0.62	0.57		0.37	0.37			0.23		0.23	0.23	
v/c Ratio	0.55	0.47		0.10	0.77			0.12		0.67	0.40	
Control Delay	12.3	8.9		14.6	20.4			14.8		34.3	8.0	
Queue Delay	0.0	0.0		0.0	0.0			0.0		0.0	0.0	
Total Delay	12.3	8.9		14.6	20.4			14.8		34.3	8.0	
LOS	В	А		В	С			В		С	А	
Approach Delay		9.5			20.3			14.8			21.3	
Approach LOS		А			С			В			С	
Queue Length 50th (m)	9.7	31.1		1.5	49.6			2.6		22.2	2.2	
Queue Length 95th (m)	25.8	49.5		6.0	76.3			10.3		45.6	17.3	
Internal Link Dist (m)		518.2			383.0			43.2			572.0	
Turn Bay Length (m)	50.0			15.0						25.0		
Base Capacity (vph)	409	2424		269	1656			516		411	606	
Starvation Cap Reductn	0	0		0	0			0		0	0	
Spillback Cap Reductn	0	0		0	0			0		0	0	
Storage Cap Reductn	0	0		0	0			0		0	0	
Reduced v/c Ratio	0.53	0.39		0.07	0.60			0.09		0.49	0.33	
Intersection Summary Cycle Length: 70 Actuated Cycle Length: 60.1 Control Type: Semi Act-Unco Maximum v/c Ratio: 0.77 Intersection Signal Delay: 15 Intersection Capacity Utilizat Analysis Period (min) 15	oord 5.6 tion 68.0%			In IC	itersectior CU Level o	n LOS: B of Service	C					

Splits and Phases: 2: Access #3/Regency Park Drive & Washmill Lake Drive

 Ø2		
46 s		24 s
▶ ø5	₩ Ø6	₫ ø8
12 s	34 s	24 s