REGENCY LINKS TRAFFIC IMPACT STUDY REVISED REPORT

PREPARED FOR:

QUAD-RAM CONSTRUCTION LIMITED

FEBRUARY 2025

Project No. CA0004090.6438

vsp

TABLE OF CONTENTS

1	INTRODUCTION	1
2	STUDY AREA DESCRIPTIONS	2
3	BACKGROUND TRAFFIC	4
4	ACTIVE TRANSPORTATION AND TRANSIT.	5
5	TRIP GENERATION, DISTRIBUTION, AND	
	ASSIGNMENT	8
6	INTERSECTION OPERATIONAL ANALYSIS.	11
6.1	Analysis Scenarios	12
6.2	Int #1: Lacewood Drive at Regency Park Drive	13
6.3	Int #2: Washmill Lake Drive at Regency Park Drive	14
6.4	Int #3: Lacewood Drive at Highway 102 NB Ramps	15
6.5	Int #4: Lacewood Drive at Highway 102 SB Ramps	16
6.6	Int #5: Dunbrack Street at Washmill Lake Drive	17
6.7	Int #6: Dunbrack Street at Highway 102 NB Ramps	18
6.8	Int #7: Dunbrack Street at Highway 102 SB Ramps	19
6.9	Int #8: Regency Park Drive at Internal Road	20
7	SUMMARY & RECOMMENDATIONS	21
7.1	Summary	21
7.2	Recommendations	23

APPENDICES

- A TRAFFIC VOLUME DATA
- **B** WARRANT ANALYSIS
- **C** INTERSECTION PERFORMANCE ANALYSIS

PREPARED BY:

BRIANNA RIETZEL, EIT PATRICK HATTON, P.ENG.

1 INTRODUCTION

Background

Plans are being prepared for a multi-use development consisting of about 3,830 residential units and 155,665 square feet of commercial space on vacant land north of the Bayers Lake Business Park in Halifax, Nova Scotia, see Figure 1. Buildout of the development is expected by 2034. The Halifax Regional Municipality (HRM) has requested that a Traffic Impact Study (TIS) be completed to review the impacts to the adjacent transportation network. WSP Canada Inc. has been retained to complete this TIS.

Figure 1 – Development Location

A Traffic Impact Study Usually Considers Four Questions

Study

Objectives

A TIS usually consists of determining answers to the following questions:

- 1. What is the existing transportation situation adjacent to the study site? How have volumes changed historically?
- 2. What transportation changes are expected at key Study Area locations? How many vehicle trips are expected to be generated by the proposed development during weekday peak hours? What routes are the trips expected to use to travel within and through the Study Area?
- 3. What transportation impacts will occur on Study Area roads, sidewalks, and intersections?
- 4. What transportation improvements are required to mitigate project impacts on Study Area travel? Are there transportation modifications that should be made to improve the travel experience for all users?

The objectives of the traffic impact study are to:

- 1. Develop projected 2039 background weekday AM and PM peak hourly traffic volumes for Study Intersections. This includes connection of Regency Park Drive and diverted traffic but does not include site development.
- 2. Estimate the number of weekday AM and PM peak hour vehicle trips that will be generated by the proposed development.
- 3. Distribute and assign site generated trips to Study Intersections to project 2039 peak hourly volumes that include site generated trips.
- 4. Evaluate impacts of site generated traffic on the performance of Study Intersections.
- 5. Complete warrant analyses, as necessary, for Study Intersections and recommend improvements that may be needed at Study Intersections to mitigate the impacts of site development.

2 STUDY AREA DESCRIPTIONS

Description of Existing Development

Description of Proposed Development The proposed development area is on the vacant land bounded by Washmill Lake Drive and Thomas Raddall Drive.

The proposed development is planned to include 3,830 high-rise residential units and 155,665 square feet of ground floor retail space. The study will consider the build out development scenario with a study horizon year of 2039.

A concept of the proposed development is shown in Figure 2. The proposed development consists of 18 residential towers, of which ten are expected to have commercial space.

Figure 2 - Site Concept

Existing Study Road Descriptions *Washmill Lake Drive* is a four-lane major collector through Clayton Park, running from Chain Lake Drive in the west to Dunbrack Street in the east with a speed limit of 60 km/h in this area. There are sidewalks and dedicated bicycle lanes on both sides of Washmill Lake Drive.

Regency Park Drive is a two-lane major collector with a speed limit of 50 km/h that runs south from Lacewood Drive about 850m to its current terminus. There are sidewalks on both sides of the road and no existing dedicated bicycle lanes.

Parkland Drive is a two-lane major collector with a speed limit of 50 km/h. Parkland Drive is a continuation of Regency Park Drive north of Lacewood Drive. There are sidewalks on both sides of the road and no dedicated bicycle lanes.

Lacewood Drive is a four-lane arterial with a posted speed limit of 60 km/h at the study intersections. There are sidewalks on both sides of the road and no dedicated bicycle lanes.

Dunbrack Street is a four-lane arterial with a posted speed limit of 60 km/h. There is a multi-use path on the east side of the street.

\\SD

Existing Study Intersection Descriptions The traffic study includes review of one existing intersection north of the site as well as two proposed intersections. These intersections are shown in Figure 3 and a description of each is provided below.

Figure 3 - Study Intersections

Intersection #1 – Lacewood Drive at Parkland Drive/Regency Park Drive is a 4-leg signalized intersection with a left-turn lane, two through lanes, and a right-turn channelized lane in the eastbound and westbound directions (Lacewood Drive approaches); and a left-turn lane, a through lane, and a right-turn channelized lane in the northbound and southbound directions. All approaches have marked pedestrian crossings.

Intersection #2 – Washmill Lake Drive at Regency Park Drive is a proposed 4-leg intersection. Washmill Lake Drive is a four-lane roadway running east-west with a proposed street connection (Regency Park Drive) as the southbound approach and a driveway for the proposed development forming the northbound approach.

Intersection #3&4 – Lacewood Drive at the Highway 102 Ramps are 4-leg signalized multi-lane intersections. The northbound approaches have marked pedestrian crossings.

Intersection #5 – Dunbrack Street at Washmill Lake Drive is a 3-leg signalized intersection with a left-turn lane and two through lanes in the northbound direction, two through lanes and a channelized right-turn lane in the southbound direction, and a shared trough/left-turn lane and a right-turn channelized lane in the eastbound direction. All approaches have marked pedestrian crossings.

Intersection #6&7 – Dunbrack Street at the Highway 102 Ramps are 4-leg unsignalized multilane intersections. These intersections are not accessible by pedestrians.

Intersection #8 – Regency Park Drive at Internal Road is a proposed 4-leg intersection. Regency Park Drive is a proposed two-lane roadway running north-south with a proposed street connection (Internal Road) as the eastbound and westbound approaches.

3 BACKGROUND TRAFFIC

Turning Movement Counts	Turning movement counts were collected at the Lacewood Drive at Regency Park Drive / Parkland Drive and Washmill Lake Drive at Bently Drive intersections on Wednesday, June 21, 2023 for the PM peak period and on Thursday, June 22, 2023 for the AM peak period. The counts at the Bently Drive intersection were used to estimate the two-way volumes along Washmill Lake Drive fronting the site and project the future volumes at the Washmill Lake Drive intersection.
	Additional turning movement counts were collected at the Lacewood Drive intersections (study intersection 1, 3, and 4) on Tuesday, April 23, 2024 for the PM peak period and on Wednesday, April 24, 2024 for the AM peak period.
	Further turning movement counts were collected at the Dunbrack Street intersections (study intersection 5, 6, and 7) on Tuesday, November 19, 2024 for the AM and PM peak periods.
	Intersection counts have been tabulated in 15-minute intervals with peak hours indicated by shaded areas. Pedestrian volumes are summarized in hourly increments. Turning movement counts are summarized in Tables A-1 to A-8, Appendix A. No Seasonal adjustment factor has been applied since the HRM factors for each of the counted days are below 1.0 and would result in a reduction from the observed volumes.
Traffic Growth Rate	An annual growth rate of 0.5% was applied to project the 2039 Future Background Volumes (see Figure A-2, Appendix A). This is expected to account for continuing development in the area in additional vehicle trips generated by population increases in the area and coincides with the HRM 0.5% annual traffic growth target.
Redistribution of Background Traffic to the Extended Regency Park Drive	With the proposed extension of Regency Park Drive, it is anticipated that some background traffic in the current roadway network will redistribute their trips to the extended roadway. The projected 2039 Future Background Volumes with the Extension of Regency Park Drive are shown in Figure A-3, Appendix A.
Background Development Trips	Trip Generation Study, Bayers Lake Expansion Lands (WSP, April 2022) estimates the generated trips for the new Community Outpatient Centre in the Bayers Lake area. It was estimated that that development will generate:
	 246 two-way trips (165 entering and 81 exiting) during the AM peak hour; and, 234 two-way trips (82 entering and 152 exiting) during the PM peak hour.
	The Community Outpatient Centre trips were applied to the 2039 future background volumes along Lacewood Drive and Washmill Lake Drive without site generated trips to provide a

realistic estimate of traffic during this period.

4 ACTIVE TRANSPORTATION AND TRANSIT

Active Transportation

Sidewalk facilities and / or multi-use paths are available along each of the study roads and sidewalk is planned for both sides along the extended Regency Park Drive. Bicycle facilities are also planned for the extended Regency Park Drive and the developer intends to work with HRM to ensure the desired bicycle facility type is put in place with the road extension. It is understood that HRM has recently completed a project to review and recommend the type of bicycle facilities on Parkland Drive up to Lacewood Drive and includes options for providing bicycle facilities crossing at the Lacewood Drive intersection. While the exact bicycle facility type proposed for Parkland Drive is not yet finalized and the design has not been completed,

Figure 4 – Candidate Bicycle Facilities Extracted from Map 2C, Making Connections, Halifax

Transit

There are many transit stops in the area. Transit stops #6719 and #7446 are along Washmill Lake Drive near Bently Drive just to the east of the site, and there are several transit stops and routes along the existing portion of Regency Park Drive and Thomas Raddall Drive. The site is about 1.3km from the Lacewood Terminal, which is serviced by Halifax Transit routes #2, #3, #4, #21, #28, #30, #39, #135, #136, #137, #138, and #433. The existing transit network in the area is shown in Figure 5.

Figure 5 – Existing Halifax Transit Routes

A transit route (#137, Regency Park Express) running along the extended Regency Park Drive fronting the site and connecting to Scotia Square (AM) and Lacewood Terminal (PM) was proposed in Map 1 of the Council Approved Halifax Transit Moving Forward Together Plan (See Figure 6). It is anticipated that the extended street will include routing of transit fronting the site given the current routing along Regency Park Drive and Washmill Lake Drive (See Figure 5) and the proximity to the Lacewood Terminal.

Figure 6 – Proposed Transit Routes in the project area Extracted from Map 1, Halifax Transit Moving Forward Together Plan

HRM has completed a rapid transit strategy that would see the implementation of four Bus Rapid Transit (BRT) lines and three new ferry routes which will "promote the creation of more compact and walkable communities and increase mobility options alternative to private vehicles". The proposed green line is planned to travel between the Lacwood Terminal and SMU and would provide frequent and reliable transit service between the study area and Peninsular Halifax.

Figure 7 – HRM Rapid Transit Strategy – Proposed Routes

5 TRIP GENERATION, DISTRIBUTION, AND ASSIGNMENT

Prepared Trip Generation Estimates

Proposed Development trips that will be generated by the proposed development. The proposed development is expected to include 3,830 high-rise residential units and 155,665 square feet of ground floor retail space.

When using the published trip generation rates in the Trip Generation Manual, the

transportation engineer's objective should be to provide a realistic estimate of the number of

Anticipated Land Use for the Proposed Development Trip generation estimates for the proposed development were prepared using published rates and equations from *Trip Generation Manual*, 11th Edition (Institute of Transportation Engineers, Washington, 2021). Trip generation estimates for the AM and PM peak hours of adjacent streets have been prepared based on the number of units for residential developments and 1,000 square feet of leasable area for the retail space.

Based on the proposed development's proximity to numerous amenities and that the site lies within an area of HRM with high active transportation and transit usage, many of the trips generated by the proposed development are anticipated to be non-auto trips. Using the methodology provided in *Trip Generation Handbook*, 3^{rd} Edition (Institute of Transportation

Engineers, Washington, 2017), estimates of the total person trips generated by the development were prepared (See Table 1).

With residential and retail land uses planned for this development, many of the trips generated by the site are expected to be internal trips, those that are made between complementary land uses within the development, such as a resident visiting a store on the ground level who never leaves the site. The National Cooperative Highway Research Program (NCHRP) Report 684 – Enhancing Internal Trip Capture for Mixed-Use Developments provides an estimation tool for considering internal trips. Output worksheets from this estimation tool are included in Appendix Β.

Appendix B of the ITE Trip Generation Handbook, 3rd Edition (2017) includes baseline modal share data for a variety of land use types including apartments and shopping centers.

Appendix B of the Handbook indicates that the modal share of the sample trip data for apartment and shopping center land uses was 96%-100% vehicle trips.

For this development, it is expected that significantly more than 0-4% of the person trips will be by transit and active modes and the multimodal trip generation methodology identified in Figure 3.1 of the Handbook has been applied to the trip generation estimates for this development.

Trips Generated by the Proposed Development – Total Trips Generated

Trip generation estimates for the proposed development are summarized in Table 1. It is estimated that the development will generate:

- 1,415 two-way external person trips (516 entering and 899 exiting) during the AM peak hour; and,
- 2,116 two-way external person trips (1,204 entering and 912 exiting) during the PM peak hour.

									-
Land Upa ¹	Units ²		Trip Genera	tion Rates ³	Tr	Trip Generation Estimates ³			
Land Use ¹		AM Peak		PM Peak		AM Peak		PM Peak	
		In	Out	In	Out	In	Out	In	(
Multifamily Housing (High Rise) 222 MU1, MU2, MU3, MU5, MU6, MU9	1372					83	237	236	1
Multifamily Housing (High Rise) 222 MU4, MU7, MU8, MU10	946	Equ	ations from	Page 207 8	209	59	168	167	1
Multifamily Housing (High Rise) 222	420	⊑qu	Equations from Page 307 & 308			29	82	82	

Table 1 – Trip Generation Estimates for the Proposed Development

1. Rates and equations are from Trip Generation, 11th Edition, Institute of Transportation Engineers, 2021. Directional splits were corrected using the NOTES: Errata released by ITE

Baseline Vehicle Trip Estimate for the Proposed Development

2. KGLA is 'Gross Leasable Area x 1000 SF'.

MU11, MU12 Multifamily Housing (High Rise) 222

MU13, MU14, MU15, MU16, MU17, MU18 Strip Retail Plaza (<40k GLA) 822

MU1, MU2, MU3, MU5, MU6, MU9

Strip Retail Plaza (<40k GLA) 822

MU4, MU7, MU8, MU10

3. Rates are 'vehicles per hour per unit'; trips generated are 'vehicles per hour for peak hours'.

1092

88.1

KGLA

67.6

KGI A

4. Baseline vehicle trips using historical trip generation dara from Trip Generation, 11th Edition have been converted to person trips using methodology and conversion factors provided in Trip Generation Handbook, 3rd Edition (Institute of Transportation Engineers, 2017).

Rates from Pages 230 & 231

Total Person Trips

Internal Person Trips

External Person Trips

5. Internal and external person trip estimates are based on methodology from National Cooperative Highway Research Program (NCHRP) 684 with associated worksheets provided in Appendix B.

Estimated Modal Shares of Development Trips

The site is located near the Lacewood Transit Terminal and several transit routes and there are existing or planned bicycle facilities along Washmill Lake Drive, Regency Park Drive, and Parkland Drive with existing or planned active transportation connections to the Mainland North Trail, the Bayers Lake Business Park, and the Chain of Lakes Trail (See Section 4). HRM's Integrated Mobility Plan (IMP) sets a modal share target that by 2031 at least 26% of all person trips in the Inner Suburban Area will be made by transit or active transportation. The horizon year for this TIS is 2039 and this site is located within a five-minute bike ride of a major transit terminal (Lacewood) as well as near several existing and planned active transportation facilities. While it is expected that the non-auto modal share of site trips will exceed the HRM targets for this area, a conservative 25% modal share of transit and active transportation has been applied to site generated person trips. The non-auto modal share for this area in 2016 was about 25%.

It is estimated that the development will generate:

- 919 two-way vehicle trips (335 entering and 584 exiting) during the AM peak hour; and, •
- 1,376 two-way vehicle trips (783 entering and 593 exiting) during the PM peak hour.

Tabla	2 Total	Trin	Constation	Ectimates	for the	Dropood	Dovolo	nmont
Iable	Z = 1 Utai	mp	Generation	Loundleo	ior the	FIUPUSeu	Develu	pillent

Travel Mode	Madel Chara	AM I	Peak	PM Peak		
	wodal Share	In	Out	In	Out	
Extern	al Person Trips	516	899	1204	912	
Auto Driver	65%	335	584	783	593	
Auto Passenger	10%	52	90	120	91	
Transit	20%	103	180	241	182	
Active Modes	26	45	60	46		

Out

144

102

50

117

290

223

926

1105

193

912

67

125

96

459

528

12

516

192

83

64

826

911

12

899

190

290

223

1188

1397

193

1204

vsp											
Rationalization of Estimated Modal Share	The projected transit modal share for the proposed development considers the proximity of the Lacewood terminal, the existing transit routes along Washmill Lake Drive fronting the site, and the planned transit route along the extended Regency Park Drive.										
	The projected active transportation modal share for the proposed development considers the existing bicycle lanes and sidewalk along Washmill Lake Drive, the sidewalk and bicycle facilities planned for the extended Regency Park Drive, and the proximity of the site to the Bayers Lake business park, and several nearby facilities such as Halifax West High School, Canada Games Center, and the Lacewood Square retail development.										
Trip Distribution and Assignment	The proposed development generated trips were distributed to the Study Intersections based on counted volumes and review of travel origin and destinations around the site. For retail development attraction, regional residential development has been considered. For new residential development, employment densities and retail draws have been considered. The estimated directional distributions are provided below.										
	Direction	Residential	Commercial								
	North on Parkland Drive	5%	5%								
	South/West on Washmill Lake Drive	25%	30%								
	North/East to Lacewood Drive	15%	15%								
	East on Washmill Lake Drive	30%	25%								
	North/West to Lacewood Drive	25%	25%								
Volume Figures	Weekday AM and PM peak hourly est were distributed and assigned to externa above assumptions. Assigned AM and H diagrammatically in Figure A-4, Appen- background volumes with redistribution provide estimates of the AM and PM development build-out which are illustra	imated site generated ve al streets and intersectio PM peak hourly site gen dix A. Assigned site dev for the extended Regen peak hour volumes at ated diagrammatically or	ehicle volumes (See Table 2) ns in the study area using the erated volumes are illustrated velopment trips were added to cy Park Drive (Figure A-3) to t study area intersections for n Figure A-5, Appendix A.								

INTERSECTION OPERATIONAL ANALYSIS

Intersection Operational Analysis was completed to estimate how intersections may be expected to operate into the future without and with site generated trips. This section of the report addresses how left-turn lane warrants and traffic signal warrants were conducted and how each intersection was evaluated. The following subsections identify each study intersection and summarize the results of the operational analysis.

Left-Turn Lane Warrant Analysis Left-turn movements on a street may cause both operational and safety problems. Operational problems result as a vehicle stopped waiting for an opportunity to turn across 'heavy' opposing traffic causes a queue of stopped vehicles to form. Safety problems result from rear end collisions when a stopped left-turning vehicle is struck by an advancing vehicle, or from head-on or right-angle collisions when a left-turning vehicle is struck by an opposing vehicle.

> The *Geometric Design Standards for Ontario Highways Manual* contains a nomograph for leftturn lane analysis for four-lane undivided streets at unsignalized intersections. The analysis method, which is normally used by WSP Atlantic to evaluate the warrant for left-turn lanes along four lane roadways, uses a nomograph that considers left-turning volume and opposing volume. A point, based on left turning and 'opposing' volumes, plotted to the right of the 'warrant line' indicates that a left-turn lane is warranted for the conditions used in the analysis. Similarly, a point that is plotted to the left of the warrant line indicates that a left-turn lane is not warranted.

> Evaluation of left turn lane warrants were completed for the Washmill Lake Drive at Regency Park Drive intersection using 2039 traffic volumes with redistribution of existing traffic onto the extended Regency Park Drive without and with the proposed development and for the Regency Park Drive at internal Road intersection. A left-turn lane is warranted in the eastbound direction on Washmill Lake Drive at Regency Park Drive without and with the addition of site generated trips. A westbound left turn lane is found to be warranted at that intersection with the addition of site generated trips. A left-turn lane is warranted in the northbound and southbound directions at the Regency Park Drive and Internal Road intersection (Study Intersection #8).

> The addition of a warranted left-turn lane has been identified based on safety of left turning vehicles but are at the discretion of HRM based on operational needs and right-of-way limitations. Left-turn lane warrant results are available in Figure B-1 and Figure B-2, Appendix B.

۸SD

Traffic Signal Warrant Analysis A signal warrant analysis is completed to determine if the installation of traffic signals at an intersection will provide a positive impact on total intersection operation. That is, the benefits in time saved and improved safety that will accrue to vehicles entering from a side street will exceed the impact that signals will have in time lost and potential additional collisions for vehicles approaching the intersection on the main street.

The Canadian Traffic Signal Warrant Matrix Analysis (Transportation Association of Canada (TAC), 2005) considers 100 warrant points as an indication that traffic signals will provide a positive impact. Signal warrant analysis uses vehicular and pedestrian volumes, and intersection, roadway and study area characteristics to calculate a warrant point value.

Evaluation of traffic signal warrants were completed for the Washmill Lake Drive at Regency Park Drive intersection using 2039 traffic volumes with the proposed development and **traffic signals are warranted** (277 vehicle warrant points) with the addition of site generated trips. Evaluation of traffic signal warrants were completed for the Regency Park Drive at Internal Road intersection using 2039 traffic volumes with the proposed development and **traffic signals are not warranted** (79 vehicle warrant points). Signal warrant results are available in Tables B-1, B-2, and B-3, Appendix B.

Evaluation of traffic signal warrants were completed for the Dunbrack Street at Highway 102 Ramp intersections using 2039 traffic volumes without and with the proposed development and **traffic signals are warranted** without and with the addition of site generated trips. Signal warrant results are available in Tables B-4, B-5, B-6, and B-7, Appendix B.

- Dunbrack Street @ 102 NB Ramps Future Background (142 warrant points)
- Dunbrack Street @ 102 NB Ramps Site Trips (186 warrant points)
- Dunbrack Street @ 102 SB Ramps Future Background (316 warrant points)
- Dunbrack Street @ 102 SB Ramps Site Trips (350 warrant points)

Intersection Capacity Analysis Results *Synchro 11* software has been used for performance evaluation of the Study Intersections. Summaries of the results are provided in the following sub-sections and detailed results of the analyses are included in Appendix C.

While Synchro is used to determine macro level delays and LOS at intersections, SimTraffic is a microscopic model that simulates real world conditions. Each vehicle in a traffic system is individually tracked through a SimTraffic model and comprehensive measures of effectiveness are collected on every vehicle during each 0.1 second of the simulation. SimTraffic analysis has been completed for ten 1-hour runs with results for the PM peak hour for scenario 2 and reported for select intersections.

It should be noted that all signalized intersections were analyzed using optimized signal timings.

6.1 ANALYSIS SCENARIOS

Summary Analysis Scenarios Considered *Scenario 1A - Future 2039 without Site:* Represents future 2039 traffic volumes on the existing road network, including the existing traffic control and lane configurations of the Study Intersections.

Scenario 1B - Future 2039 without Site – Diverted Trips: Represents future 2039 traffic volumes with future diverted trips onto the Regency Park Drive connection. The study intersections have been modified to accommodate an eastbound left-turn lane on Washmill Lake Drive at Regency Park Drive based on the warrants summarized in Appendix B.

Scenario 2 - Future 2039 with Site: Represents future 2039 traffic volumes on the existing road network, including the existing traffic control and lane configurations of the Study Intersections with buildout of the proposed development. The study intersections have been modified to accommodate left-turn lanes and traffic signalization at the Washmill Lake Drive at Regency Park Drive intersection based on the warrants summarized in Appendix B.

6.2 INT #1: LACEWOOD DRIVE AT REGENCY PARK DRIVE

Operational performance results for this intersection are provided in Table 3 for both the AM and PM peak hours for each of the analysis scenarios.

The intersection is expected to operate within HRM acceptable limits laid out in HRM's current TIS Guidelines during the AM and PM peak hours without and with site generated trips. The maximum v/c ratio is projected to be 0.75 for the westbound left-turn movement. Some changes in the operational performance of this intersection are expected with the addition of the proposed development.

		Tab	le 3 - In	tersectio	on Capao	city Ana	lysis: La	cewood	Drive a	t Regen	cy Park	Drive		
	Co	ntrol De	lay (sec	/veh), v/	c Ratio, a	nd 95 th	%ile Que	ue (m) b	y Inters	ection M	loveme	ent	0	verall
LOS Criteria		I	_acewo	od Drive			Regen	icy Park	Drive	Par	kland D	rive	Inte	rsection
	EB-L	EB-TT	EB-R	WB-L	WB-TT	WB-R	NB-L	NB-T	NB-R	SB-L	SB-T	SB-R	Delay	Control
		Scena	ario 1 A	- 2039 F	uture wit	thout Sit	e AM Pe	ak Hour	- withou	t diversi	ons (Pa	ige C-1)	_	
Delay	7.8	18.3	9.7	7.7	16.4	7.1	19.9	15.8	5.2	23.5	16.1	5.1		
v/c	0.18	0.49	0.28	0.18	0.33	0.20	0.38	0.11	0.28	0.54	0.15	0.31	14.2	jdr
Queue	13.0	42.0	18.1	12.5	28.1	11.9	25.4	12.0	11.0	36.3	14.7	11.6		
		-	Sce	nario 1 E	- 2039	Future v	vithout S	ite AM Pe	eak Hou	ır (Page	C-17)			
Delay	7.5	18.0	8.6	7.9	14.6	6.5	19.2	16.1	5.1	23.2	16.9	5.2		
v/c	0.14	0.46	0.24	0.23	0.26	0.17	0.34	0.17	0.34	0.53	0.24	0.26	13.6	
Queue	10.6	37.2	14.6	15.1	25.2	11.0	21.7	15.6	12.2	33.8	20.8	10.3		
Scenario 2 - 2039 Future with Site AM Peak Hour (Page C-31)														
Delay	10.2	22.5	15.5	11.8	18.8	7.3	28.1	16.0	4.3	20.8	16.3	5.0		
v/c	0.16	0.53	0.45	0.37	0.31	0.18	0.69	0.20	0.42	0.46	0.23	0.24	16.5	
Queue	14.4	47.3	33.8	28.1	34.5	12.2	54.1	21.3	14.3	35.5	24.7	11.1		U
		Scena	ario 1A ·	2039 F	uture wit	hout Sit	e PM Pe	ak Hour	- withou	t diversi	ons (Pa	ige C-9)		
Delay	12.6	20.4	10.8	9.1	21.9	11.4	29.7	21.0	6.4	27.3	20.6	6.0		107
v/c	0.62	0.60	0.31	0.37	0.61	0.32	0.58	0.24	0.23	0.50	0.20	0.37	17.6	
Queue	39.1	60.6	23.6	21.7	56.6	22.7	41.8	23.8	10.7	35.8	20.8	14.3		
			Sce	nario 1 B	- 2039	Future v	vithout S	ite PM Pe	eak Hou	ır (Page	C-24)			
Delay	9.8	21.4	10.4	9.1	19.6	10.4	28.6	23.5	11.5	28.9	22.0	8.3		
v/c	0.47	0.60	0.29	0.43	0.53	0.30	0.54	0.42	0.38	0.54	0.32	0.33	17.5	
Queue	30.6	57.6	20.2	27.5	50.4	21.1	36.9	39.1	21.6	35.7	30.2	16.0		
			S	cenario	2 - 2039	Future	with Site	PMPea	k Hour (Page C	-39)			
Delay	15.4	30.3	27.2	23.3	24.6	12.3	43.9	22.9	12.7	25.4	22.1	9.9		107
v/c	0.55	0.69	0.72	0.75	0.53	0.31	0.31	0.32	0.32	0.32	0.32	0.32	24.5	j di
Queue	39.1	71.0	70.3	74.1	60.8	23.9	92.4	46.8	36.1	36.6	39.4	20.1		עי

6.3 INT #2: WASHMILL LAKE DRIVE AT REGENCY PARK DRIVE

Operational performance results for this intersection are provided in Table 4 for both the AM and PM peak hours for each of the analysis scenarios. Left-turn lanes and signals are included as warranted.

With added left turn lanes as warranted and with signalization in Scenario 2, the intersection is expected to operate within HRM acceptable limits during the AM and PM peak hours without and with site generated trips. The maximum v/c ratio is projected to be 0.82 in the westbound direction during the PM peak hour. While the operations at this intersection are expected to meet HRM thresholds, consideration could be given to the construction of a westbound right turn lane (recommended 60 metre storage) to improve the delay and queueing on this approach. This lane would be particularly advantageous if transit vehicles are expected to complete this right turn movement during the PM peak period to travel to the Lacewood Terminal.

	Table 4 - Intersection Capacity Analysis: Washmill Lake Drive at Regency Park Drive											
		Control Delay	(sec/veh)), v/c Ratio,	and 95 th %ile Q	lueue (m)	_ ۱	vorall			
LOS Criteria		Washmill Lak	e Drive	Section with	Access	Rege	ncy Park Drive	Inter	Intersection			
	EB-L	EB-TT	WB-TTR			SB-LR		Delay	Control			
Scenario 1B - 2039 Future without Site AM Peak Hour (Page C-23)												
Delay	9.0	0.0		0.0	-		14.4					
v/c	0.09	0.12	0).22	-	().20	1.9				
Queue	1.6	0.0		0.0	-		6.1					
	EB-L	EB-TT	WB-L	WB-TTR	NB-LTR	SB-L	SB-TR	Delay	Control			
Scenario 2 - 2039 Future with Site AM Peak Hour (Page C-32)												
Delay	19.4	10.0	9.4	11.5	9.6	21.6	5.5		Ċ			
v/c	0.52	0.31	0.04	0.52	0.18	0.60	0.23	12.5	jdi			
Queue	27.4	27.0	3.8	46.4	14.6	46.7	11.8					
	EB-L	EB-TT	WE	۶-TTR		S	B-LR	Delay	Control			
		Scenario 1B - 2	2039 Fut	ure without	Site PM Peak	Hour (Pa	ige C-30)					
Delay	10.3	0.0		0.0	-	2	25.9					
v/c	0.18	0.28	C	0.30	-	().44	2.5				
Queue	5.3	0.0		0.0	-		17.3					
	EB-L	EB-TT	WB-L	WB-TTR	NB-LTR	SB-L	SB-TR	Delay	Control			
	Scenario 2 - 2039 Future with Site PM Peak Hour (Page C-40)											
Delay	24.4	10.4	22.2	29.5	18.8	48.3	10.4					
v/c	0.66	0.48	0.19	0.82	0.13	0.78	0.37	22.4	idi			
Queue	56.8	69.4	12.3	119.0	14.5	83.0	23.7		U r			

6.4 INT #3: LACEWOOD DRIVE AT HIGHWAY 102 NB RAMPS

Operational performance results for this intersection are provided in Table 5 for both the AM and PM peak hours for each of the analysis scenarios.

The intersection is expected to operate within NSPW guidelines during the AM and PM peak hours without and with site generated trips, with the exception of the northbound right movement during PM peak hour with the addition of site generated trips. The maximum v/c ratio is projected to be 0.98 for the northbound right-turn movement. Some changes in the operational performance of this intersection are expected with the addition of the proposed development.

SimTraffic analysis (11 one-hour runs) was completed to supplement the assessment of this intersection due to the high delay and queuing on the northbound right turn movement. This additional analysis indicates that during the PM peak hour of Scenario 2, the northbound right turning movement may operate with an average delay of about 35 seconds with a 95th percentile queue of 80.4m (See Page C-47, Appendix C).

	Control Dela	Movement	Overall									
LOS Criteria		Lacewood	Drive		Highw	ay 102 NB F	Ramps	Intersection				
	EB-LL	EB-TT	WB-TTT	WB-R	NB-L	NB-LT	NB-R	Delay	Control			
	Scenario 1A - 2039 Future without Site AM Peak Hour - without diversions (Page C-2)											
Delay	0.4	0.5	40.7	7.9	29.1	29.1	33.3					
v/c	0.14	0.25	0.66	0.51	0.18	0.18	0.84	20.5	idr			
Queue	0.0	0.0	53.4	19.7	19.8	19.8	70.6		יטי			
	Scenario 1B - 2039 Future without Site AM Peak Hour (Page C-18)											
Delay	0.3	0.3	41.9	8.9	32.6	32.6	29.7		j L			
v/c	0.12	0.20	0.63	0.53	0.21	0.21	0.85	20.4	jdr			
Queue	0.5	0.0	47.7	20.5	20.9	20.9	60.3					
Scenario 2 - 2039 Future with Site AM Peak Hour (Page C-33)												
Delay	2.0	1.0	38.9	7.6	25.2	25.2	33.7					
v/c	0.17	0.27	0.66	0.60	0.15	0.15	0.86	20.6	jdi			
Queue	0.0	0.0	58.4	22.6	18.3	18.3	83.3					
	Scena	rio 1A - 2039 Fu	iture withou	t Site PM P	eak Hour -	without dive	ersions (Pag	je C-10)				
Delay	13.2	5.5	52.5	11.3	36.9	36.8	51.6		Ċ			
√/c	0.71	0.47	0.87	0.55	0.38	0.37	0.88	27.5	idr			
Queue	138.5	4.5	114.7	38.3	52.5	52.4	115.1					
	-	Scenario 1E	- 2039 Fut	ure without	Site PM Pe	ak Hour (Pa	age C-25)		-			
Delay	12.4	3.8	48.8	8.5	38.4	38.2	48.1		Ċ			
√c	0.67	0.41	0.80	0.54	0.40	0.39	0.87	25.4	jdr			
Queue	139.6	3.2	99.4	28.3	52.5	52.4	106.3					
		Scenario	2 - 2039 Fu	ture with Si	te PM Peak	Hour (Page	e C-41)					
Delay	28.6	9.2	50.7	11.0	31.4	31.3	65.5		..			
v/c	0.88	0.52	0.84	0.65	0.30	0.30	0.98	32.7	idi			
Queue	139.7	0.0	108.3	43.4	52.5	52.4	203.0		יטי			

Table 5 - Intersection Capacity Analysis: Lacewood Drive at Highway 102 NB Ramps

6.5 INT #4: LACEWOOD DRIVE AT HIGHWAY 102 SB RAMPS

Operational performance results for this intersection are provided in Table 6 for both the AM and PM peak hours for each of the analysis scenarios.

The intersection is expected to operate within NSPW guidelines during the AM and PM peak hours without and with site generated trips. The maximum v/c ratio is projected to be 0.77 for the eastbound through movement. Negligible changes in the operational performance of this intersection are expected with the addition of the proposed development.

	l able 6 -	Intersection	Capacity A	nalysis: La	cewood Driv	ve at Highwa	ay 102 SB R	amps			
	Control Delay (sec/veh),v/c	Ratio, and	95 th %ile Qu	eue (m) by	Intersection	Movement	Overall			
LOS Criteria		Lacewood	Drive		Highw	ay 102 SB F	Inte	ersection			
	EB-TTTT	EB-R	WB-L	WB-TT	SB-L	SB-LT	SB-R	Delay	Control		
	Scenario	1A - 2039 F	uture witho	ut Site AM F	Peak Hour -	without dive	ersions (Pa	ge C-3)			
Delay	43.6	10.9	1.4	0.3	50.6	50.6	0.6				
√c	0.58	0.26	0.24	0.20	0.64	0.64	0.35	17.8	<u>idr</u>		
Queue	34.8	11.4	9.3	0.0	52.4	52.4	0.0				
		Scenario 1E	- 2039 Fut	ure without	Site AM Pe	ak Hour (Pa	age C-19)				
Delay	44.0	11.7	2.1	0.3	50.6	50.6	0.6		101		
v/c	0.52	0.29	0.24	0.17	0.64	0.64	0.35	17.5	idr		
Queue	29.1	11.6	17.4	0.0	52.4	52.4	0.0				
Scenario 2 - 2039 Future with Site AM Peak Hour (Page C-34)											
Delay	43.8	11.1	1.9	0.4	50.2	50.4	0.6		107		
v/c	0.57	0.27	0.28	0.22	0.65	0.66	0.35	17.3	idi		
Queue	33.2	11.4	0.0	0.8	54.9	55.2	0.0				
	Scenario [·]	1Α - 2039 Fι	uture withou	it Site PM P	eak Hour - v	without dive	ersions (Pag	ge C-11)			
Delay	38.5	7.1	6.8	3.1	64.1	64.1	0.6		107		
v/c	0.77	0.45	0.54	0.39	0.68	0.68	0.36	21.5	id r		
Queue	118.5	28.7	117.9	115.6	60.3	60.3	0.0				
	9	Scenario 1E	3 - 2039 Fut	ure without	Site PM Pe	ak Hour (Pa	age C-26)				
Delay	39.4	5.5	6.2	1.8	64.1	64.1	0.6		100		
v/c	0.74	0.46	0.51	0.34	0.68	0.68	0.36	21.3	jdi		
Queue	103.8	21.0	132.3	96.1	60.3	60.3	0.0		יטי		
		Scenario	2 - 2039 Fu	ture with Si	te PM Peak	Hour (Page	e C-42)				
Delay	40.1	6.2	9.6	2.7	66.0	66.3	0.6		107		
v/c	0.76	0.46	0.58	0.36	0.73	0.74	0.36	22.6	idi		
Queue	111.8	24.3	134.9	100.3	69.5	69.8	0.0				

6.6 INT #5: DUNBRACK STREET AT WASHMILL LAKE DRIVE

Operational performance results for this intersection are provided in Table 5 for both the AM and PM peak hours for each of the analysis scenarios.

The intersection is expected to operate within HRM acceptable limits laid out in HRM's current TIS Guidelines during the AM and PM peak hours without and with site generated trips. The maximum v/c ratio is projected to be 0.94 for the eastbound right-turn movement. Some changes in the operational performance of this intersection are expected with the addition of the proposed development. The northbound left turn lane at the intersection currently has about 120m of storage. Consideration should be given to lengthening this left turn lane or providing dual northbound left turn lanes at this intersection to accommodate background traffic and site generated trips.

	Control Delay (sec/veh), v/c Ratio, and 95 th %ile Queue (m) by Intersection Movement												
LOS Criteria	Washmill	Lake Drive		Dunbrac	k Street		Inte	Intersection					
	EB-L	EB-R	NB-L	NB-TT	SB-TT	SB-R	Delay	Control					
	Scenario 1A - 2039 Future without Site AM Peak Hour - without diversions (Page C-4)												
Delay	27.0	11.0	7.1	5.3	23.5	14.7							
√c	0.16	0.68	0.52	0.36	0.66	0.12	12.1	idi					
Queue	13.8	23.3	34.3	34.8	63.9	12.8							
Scenario 1B - 2039 Future without Site AM Peak Hour (Page C-20)													
Delay	26.9	11.0	7.3	5.3	23.7	14.8							
√c	0.15	0.70	0.52	0.36	0.66	0.12	12.2	jdr					
Queue	13.8	24.2	35.5	35.7	64.5	13.0							
	Scenario 2 - 2039 Future with Site AM Peak Hour (Page C-35)												
Delay	33.0	9.8	12.4	6.5	28.4	15.1							
√c	0.49	0.72	0.63	0.37	0.70	0.31	15.2	jdi					
Queue	40.7	26.8	68.2	43.9	70.1	24.4							
	Scenario	1A - 2039 Futi	ure without Site	e PM Peak Ho	our - without di	versions (Pag	e C-12)						
Delay	41.7	13.8	22.7	5.1	34.5	21.8		-0-					
√c	0.31	0.81	0.71	0.33	0.80	0.17	20.0						
Queue	27.8	34.5	128.9	50.8	130.4	25.3							
	ç	Scenario 1B -	2039 Future	without Site Pl	M Peak Hour (Page C-27)							
Delay	40.9	15.5	23.8	5.4	35.2	22.3		107					
v/c	0.30	0.84	0.72	0.34	0.80	0.17	20.8	jdi					
Queue	27.6	41.2	133.8	54.2	133.8	25.8		Ľ					
		Scenario 2	- 2039 Future	with Site PM	Peak Hour (Pa	age C-43)							
Delay	48.2	30.3	49.7	7.6	45.2	26.0							
v/c	0.59	0.94	0.93	0.34	0.85	0.46	33.0	idi					
Queue	67.3	119.4	230.2	54.2	133.8	57.8							

Table 7 - Intersection Capacity Analysis: Dunbrack Street at Washmill Lake Drive

6.7 INT #6: DUNBRACK STREET AT HIGHWAY 102 NB RAMPS

Operational performance results for this intersection are provided in Table 8 for both the AM and PM peak hours for each of the analysis scenarios. Signals are warranted for to accommodate background traffic and the intersection is expected to operate poorly as a STOP controlled intersection, as shown below.

The signalized intersection is expected to operate within NSPW guidelines during the AM and PM peak hours without and with site generated trips. The maximum v/c ratio is projected to be 0.64 for the southbound through movement in the PM peak hour. Negligible changes in the operational performance of this intersection are expected with the addition of the proposed development.

	Control Dela	on Movement	Overall								
LOS Criteria	Highway 10	2 NB Ramps		Dunbrac	k Street		Inte	rsection			
	WB-LT	WB-R	NB-TT	NB-R	SB-TT	SB-R	Delay	Control			
	Scenari	o 1A - 2039 Fu	ture without Si	te AM Peak Ho	our - without div	versions (Page	e C-7)				
Delay	134.8	0.0	0.0	0.0	0.0	0.0					
√/c	1.13	-	0.30	0.26	0.20	0.17	15.4				
Queue	106.2	-	0.0	0.0	0.0	0.0					
Scenario 1A - 2039 Future without Site AM Peak Hour - without diversions (Page C-5)											
Delay	21.2	0.2	6.7	1.8	5.8	2.4					
v⁄c	0.36	0.12	0.43	0.36	0.29	0.26	5.4	₩F			
Queue	22.4	0.0	42.6	9.6	26.3	11.3		יסי			
		Scenario 1B	- 2039 Future	without Site AN	/I Peak Hour (P	age C-21)					
Delay	21.2	0.2	6.7	1.8	5.8	2.5					
√c	0.36	0.12	0.43	0.36	0.30	0.27	5.4	jdi			
Queue	22.4	0.0	42.6	9.6	26.9	12.0					
Scenario 2 - 2039 Future with Site AM Peak Hour (Page C-36)											
Delay	22.1	0.2	6.7	1.7	5.8	0.3		101			
v/c	0.36	0.14	0.45	0.36	0.32	0.22	5.1	j di			
Queue	23.0	0.0	45.9	9.6	30.2	0.0					
	Scenario	1A - 2039 Fut	ure without Sit	e PM Peak Ho	ur - without dive	ersions (Page	C-15)				
Delay	Err	0.0	0.0	0.0	0.0	0.0					
v⁄c	3.81	-	0.28	0.27	0.32	0.23	Err				
Queue	Err	-	0.0	0.0	0.0	0.0					
	Scenario	1A - 2039 Fut	ure without Sit	e PM Peak Ho	ur - without dive	ersions (Page	C-13)				
Delay	22.1	0.5	11.0	2.6	12.0	7.6		107			
v/c	0.55	0.29	0.54	0.45	0.62	0.47	9.3	id r			
Queue	50.9	0.0	57.2	12.7	68.6	37.4					
		Scenario 1B	- 2039 Future	without Site PN	/I Peak Hour (P	age C-28)					
Delay	22.5	0.5	10.9	2.6	12.0	7.7					
√c	0.56	0.29	0.54	0.45	0.62	0.47	9.3	jdi			
Queue	51.3	0.0	57.4	12.6	69.7	38.8					
		Scenario 2	- 2039 Future	with Site PM P	Peak Hour (Pag	je C-44)					
Delay	24.1	0.6	11.2	2.5	12.3	8.4					
v/c	0.57	0.33	0.57	0.44	0.64	0.52	9.6				
Queue	55.4	0.0	67.0	12.6	79.4	47.5					

Table 8 - Intersection Capacity Analysis: Dunbrack Street at Highway 102 NB Ramps

INT #7: DUNBRACK STREET AT HIGHWAY 102 SB RAMPS 6.8

Operational performance results for this intersection are provided in Table 9 for both the AM and PM peak hours for each of the analysis scenarios. Signals are warranted to accommodate background traffic and the intersection is expected to operate poorly as a STOP controlled intersection, as shown below.

The signalized intersection is expected to operate within NSPW guidelines during the AM and PM peak hours without and with site generated trips. The maximum v/c ratio is projected to be 0.75 for the eastbound left-turn/through movement in the AM peak period. Negligible changes in the operational performance of this intersection are expected with the addition of the proposed development.

	Control Dela	y (sec/veh), v/c	Ratio, and 95 th	%ile Queue (m	n) by Intersection	n Movement		vorall
LOS Criteria	Highway 10	2 SB Ramps		Dunbrac	k Street		Inte	rsection
	EB-LT	EB-R	NB-TT	NB-R	SB-TT	SB-R	Delay	Control
	Scenari	o 1A - 2039 Fu	ture without Si	te AM Peak Ho	our - without div	ersions (Page	C-8)	
Delay	544.3	75.7	0.0	0.0	0.0	0.0		
v/c	2.09	1.07	0.31	0.33	0.12	0.02	92.0	
Queue	271.7	178.0	0.0	0.0	0.0	0.0		
	Scenari	o 1A - 2039 Fu	ture without Si	te AM Peak Ho	our - without div	ersions (Page	C-6)	
Delay	26.9	1.4	16.3	6.2	11.9	0.0		
v/c	0.72	0.55	0.65	0.59	0.25	0.02	11.5	jdi
Queue	102.0	0.0	94.1	39.5	31.7	0.0		יטי
		Scenario 1B	- 2039 Future	without Site AN	/I Peak Hour (P	age C-22)		
Delay	26.9	1.4	16.3	6.2	11.9	0.0		101
v/c	0.72	0.55	0.65	0.59	0.25	0.03	11.4	
Queue	102.0	0.0	94.1	39.5	31.7	0.0		
		Scenario 2	- 2039 Future	with Site AM P	Peak Hour (Pag	e C-37)		
Delay	28.7	1.4	17.4	6.6	12.6	0.1		50
√/c	0.75	0.55	0.66	0.59	0.26	0.06	12.1	id é
Queue	113.3	0.0	100.9	42.6	35.2	0.0		
	Scenario	1A - 2039 Fut	ure without Sit	e PM Peak Ho	ur - without dive	ersions (Page	C-16)	
Delay	Err	342.5	0.0	0.0	0.0	0.0		
√c	4.58	1.69	0.33	0.07	0.33	0.02	Err	
Queue	Err	378.0	0.0	0.0	0.0	0.0		
	Scenario	1A - 2039 Fut	ure without Site	e PM Peak Ho	ur - without dive	ersions (Page	C-14)	
Delay	23.1	1.2	12.5	3.9	12.5	0.0		
v/c	0.58	0.50	0.64	0.15	0.64	0.02	10.3	
Queue	55.6	0.0	73.4	9.5	73.4	0.0		
		Scenario 1B	- 2039 Future	without Site PN	/I Peak Hour (P	age C-29)		
Delay	23.1	1.2	12.5	3.9	12.5	0.0		
v/c	0.58	0.50	0.64	0.15	0.64	0.03	10.3	
Queue	55.6	0.0	73.4	9.5	73.4	0.0		Ľ
		Scenario 2	- 2039 Future	with Site PM P	Peak Hour (Pag	e C-45)		
Delay	23.4	1.2	15.2	4.7	15.2	0.1		
v/c	0.62	0.50	0.70	0.15	0.70	0.06	12.1	jdi
Queue	70.2	0.0	90.5	11.1	89.9	0.0		יטי

Table 9 - Intersection Canacity Analysis: Dunbrack Street at Highway 102 SB Ramos

6.9 INT #8: REGENCY PARK DRIVE AT INTERNAL ROAD

Operational performance results for this intersection are provided in Table 10 for both the AM and PM peak hours for each of the analysis scenarios. Northbound and southbound left-turn lanes are included as warranted. Left turn lanes have been added to the internal street approaches (eastbound and westbound) based on intersection operations.

With STOP control on the side streets only, the intersection is expected to operate within HRM acceptable limits with site generated trips. The maximum v/c ratio is projected to be 0.94 in the westbound left-turning direction during the PM peak hour with a delay of 122.1 seconds per vehicle.

	1	<u> Fable 10 - Ir</u>	ntersectio	n Capacity	Analysis:	Regency Pa	r <mark>k Drive</mark> a	t Internal Ro	ad	
1.05	Con	trol Delay ((sec/veh),	v/c Ratio, a Mo	and 95 th %il vement	e Queue (m) by Inter	section	0	verall
Criteria		Internal S	treet (EW))		Regency P	ark Drive		Inte	rsection
	EB-L	EB-TR	WB-L	WB-TR	NB-L	NB-TR	SB-L	SB-TR	Delay	Control
		Sce	nario 2 -	2039 Futu	re with Site	AM Peak H	lour (Pag	e C-38)		
Delay	21.7	9.8	21.7	9.9	7.8	0.0	7.8	0.0		
v/c	0.25	0.09	0.32	0.12	0.02	0.13	0.05	0.15	6.8	2
Queue	7.6	2.2	10.9	3.3	0.6	0.0	1.4	0.0		
		Sce	nario 2 -	2039 Futu	re with Site	PM Peak H	lour (Pag	e C-46)		
Delay	104.6	10.4	122.1	11.2	8.1	0.0	8.5	0.0		
v/c	0.81	0.13	0.94	0.19	0.06	0.22	0.14	0.20	21.7	2
Queue	38.0	3.5	51.6	5.4	1.5	0.0	3.8	0.0		

While the analysis summarized in Table 10 has been completed as a stand-alone intersection, the proposed traffic signals on Washmill Lake Drive with the nearby development may provide additional gaps on Regency Park Drive and assist the left-turn movement from the Internal Streets. The intersection performance of eleven 1-hour runs using *SimTraffic* software for the 2039 PM peak hour with site development is summarized in Table 11 with results included in Appendix C.

	vement	Overall								
LOS Criteria		Internal S	treet (EW))		Regency P	Intersection			
entonia	EB-L	EB-TR	WB-L	WB-TR	Delay	Control				
		Sce	nario 2 -	2039 Futu	re with Site	PM Peak H	lour (Pag	e C-48)		
Delay	19.4	5.4	20.2	6.3	4.7	2.5	7.5	3.1	65	
Queue	23.0	17.7	24.9	20.7	13.4	3.2	17.5	1.6	0.5	

Table 11 – SimTraffic Analysis: Regency Park Drive at Internal Road

7 SUMMARY & RECOMMENDATIONS

7.1 SUMMARY

Background	1.	Plans are being prepared for a multi-use development consisting of 3,830 high-rise residential units and 155,665 square feet of ground floor retail space on vacant land north of the Bayers Lake Business Park in Halifax, Nova Scotia. Buildout of the development is expected by 2034.
Description of Existing Development	2.	The proposed development area is on the vacant land bounded by Washmill Lake Drive and Thomas Raddall Drive.
Description of Proposed Development	3.	The proposed development is expected to include 3,830 high-rise residential units and 155,665 square feet of ground floor retail space.
Proposed Site Access	4.	The proposed development is along an extension of Regency Park Drive through to Washmill Lake Drive with several small accesses along the extended Regency Park Drive and Washmill Lake Drive.
Study Area Roads	5.	The study considers Washmill Lake Drive, Regency Park Drive, Lacewood Drive, Dunbrack Street, and Parkland Drive.
Turning Movement Counts	6.	Turning movement counts were collected by WSP on Wednesday, June 21, 2023 (PM peak period), and on Thursday, June 22, 2023 (AM peak period) for the Lacewood Drive at Parkland Drive/Regency Park Drive intersection.
	7.	Additional turning movement counts were collected at the Lacewood Drive intersections (study intersection 1, 3, and 4) on Tuesday, April 23, 2024 for the PM peak period and on Wednesday, April 24, 2024 for the AM peak period.
	8.	Further turning movement counts were collected at the Dunbrack Street intersections (study intersection 5, 6, and 7) on Tuesday, November 19, 2024 for the AM and PM peak periods.
Background Traffic Volumes	9.	Projected 2039 peak hour future background volumes include an annual growth of 0.5% between 2023 and 2039. Projected 2039 traffic volumes consider trips generated by the new Bayers Lake Community Outpatient Centre separately.
	10.	Some background traffic in the current roadway network will be redistributed to the extension of Regency Park Drive. A separate volume scenario has been prepared that considers these redistributed background trips.
Estimation of Existing & Proposed Development	11.	Trip generation estimates for the proposed development were prepared using rates and equations published in <i>Trip Generation</i> , 11 th Edition (Institute of Transportation Engineers, Washington, 2021).
Trips	12.	Based on the proposed development's proximity to numerous amenities including planned transit routes and active transportation connections, many of the trips generated by the proposed development are anticipated to be non-auto trips. The methodology provided in <i>Trip Generation Handbook</i> , 3 rd Edition (Institute of Transportation Engineers, Washington, 2017), for estimating total person trips generated by a development was applied with consideration of onsite synergies – trips that are made between complementary land uses within a single site, such as residential and retail uses.

vsp	
	 13. Using the trip generation methodology outlined in <i>Trip Generation</i>, 11th Edition, and <i>Trip Generation Handbook</i>, 3rd Edition, it is estimated that the development will generate: 1,415 two-way external person trips (516 entering and 899 exiting) during the AM peak hour; and, 2,116 two-way external person trips (1,204 entering and 912 exiting) during the PM peak hour.
Estimation of Existing & Proposed Development Trips (Cont)	 14. Person trips were assigned by travel mode considering existing and planned transit and active transportation corridors for this area as well as HRM's target non-auto modal split for the Inner Suburban area. The following modal splits for the site generated trips have been applied: 65% auto driver; 10% auto passenger; 20% transit; and, 5% active modes. 15. Based on the above, it is estimated that the development will generate: 919 two-way vehicle trips (335 entering and 584 exiting) during the AM peak hour; and, 1,376 two-way vehicle trips (783 entering and 593 exiting) during the PM peak hour.
Trip Distribution and Assignment	16. Proposed development generated trips were distributed to the Study Intersections based on counted volumes considering major trip origins and destinations in the region. Retail trips have been assigned considering regional residential development, while residential trips have been assigned considering employment densities and retail draws.
Warrant Analysis Summary Summary –	 Warrant reviews were completed for left-turn lanes and traffic signals with the projected traffic volumes without and with site generated trips. It was determined that: An eastbound left turn lane will be warranted along Washmill Lake Drive at Regency Park Drive without and with site generated trips. A westbound left turn lane will be warranted along Washmill Lake Drive at Regency Park Drive with site generated trips. A westbound left turn lane will be warranted along Washmill Lake Drive at Regency Park Drive with site generated trips. Northbound and southbound left turn lanes will be warranted along Regency Park Drive at Internal Road intersection with site generated trips. Traffic signals will be warranted at Washmill Lake Drive at Regency Park Drive with site generated trips. Traffic signals will be warranted at Dunbrack Street at Highway 102 Northbound Ramps without and with site generated trips. Traffic signals will be warranted at Dunbrack Street at Highway 102 Southbound Ramps without and with site generated trips. Intersection performance analysis was completed using <i>Synchrol U</i> at the Study Intersections.
summary – Intersection Capacity Analysis	 Intersection performance analysis was completed using <i>Synchro 11</i> at the Study Intersections. The Lacewood Drive at Regency Park Drive/Parkland Drive intersection is expected to operate well and within HRM acceptable limits during the AM and PM peak periods in all scenarios. The Washmill Lake Drive at Regency Park Drive intersection is expected to operate well and within HRM acceptable limits with added turn lanes and traffic signalization, as warranted, during both the AM and PM peak periods. The Lacewood Drive at Highway 102 NB Ramps intersection is expected to operate well and within NSPW guidelines during the AM and PM peak periods in all scenarios, apart from the northbound right turn movement whose v/c ratio is expected to reach 0.98 during the PM

peak hour with the addition of site generated trips. Site generated trips are expected to have some impact to operations at this intersection.

- 23. The **Lacewood Drive at Highway 102 SB Ramps intersection** is expected to operate well and within NSPW guidelines during the AM and PM peak periods in all scenarios. Site generated trips are expected to have a negligible impact to operations.
- 24. The **Dunbrack Street at Washmill Lake Drive intersection** is expected to operate well and within HRM acceptable limits during the AM and PM peak periods in all scenarios. Site generated trips are expected to have some impact to operations.
- 25. The **Dunbrack Street at Highway 102 NB Ramps intersection** is expected to operate well and within NSPW guidelines during the AM and PM peak periods in all scenarios with traffic signalization, as warranted. Site generated trips are expected to have a negligible impact to operations.
- 26. The **Dunbrack Street at Highway 102 SB Ramps intersection** is expected to operate well and within NSPW guidelines during the AM and PM peak periods in all scenarios with traffic signalization, as warranted. Site generated trips are expected to have a negligible impact to operations.
- 27. The **Regency Park Drive at Internal Road intersection** is expected to operate within HRM guidelines with added left turn lanes on each approach.

7.2 RECOMMENDATIONS

Recommend- 28. It is recommended that at the new Washmill Lake Drive at Regency Park Drive intersection: ations

- a) Install eastbound and westbound left turn lanes on Washmill Lake Drive when connection to Regency Park Drive is completed.
- b) Install traffic signals at the Washmill Lake Drive at Regency Park Drive intersection (warranted with site development).
- 29. It is recommended that at the new Regency Park Drive and Internal Road intersection:
 - a) Install separate left turn lanes on each approach.
- 30. It is recommended that at both of the Dunbrack Street at Highway 102 Ramps intersections:
 - a) Install traffic signals (warranted without and with site development).
- 31. HRM should consider the type of bicycle connections appropriate for the existing and new portions of Regency Park Drive. It is likely that the bicycle facilities along Regency Park Drive will extend what is selected for Parkland Drive and connect to the existing bicycle lanes along Washmill Lake Drive at the proposed signalized intersection.
- 32. Halifax Transit should continue to plan for transit routing along Regency Park Drive between Washmill Lake Drive and Lacewood Drive.

APPENDIX A TRAFFIC VOLUME DATA

									Parkland Drive				
	Tak								IHG				
Parkl	Lacew	ole A-1 ood Drive @ Regency P	ark Drive			Lacew	J k L ood Drive		Ped 3 Ped 4 Pe Ped 1		F F D	·	
	Hali	How NO							1 I	r			
	PM Peak: Wedn	nesdav. June 21. 20	023						A B	c			
	AM Peak: Thur	sday, June 22, 202	23										
								R	egency Park D	rive			
	_			_	AM Pe	ak Period Vo	olume Data			-			
	R	egency Park D	rive		Lacewood Driv	/e		Parkland Driv	e	_	Lacewood Driv	'e	Total
Time	No	rthbound Appro	bach	We	estbound Appro	bach -	Sou	uthbound App	oach	Ea	stbound Appro	bach	Vehicles
07:00 07:45	A	В	C	D	E	F	G	Н	1	J	K	L	000
07:00 07:15	24	5	21	24	30	4	41	12	39	13	39	11	200
07:30 07:45	17	10	20	22	52	4	30	7	20	19	64	12	326
07:45 08:00	27	8	21	27	63	14	32	7	33	25	85	23	365
08:00 08:15	28	9	25	35	57	15	38	13	36	25	68	23	372
08:15 08:30	21	2	29	23	71	29	36	11	33	22	69	32	378
08:30 08:45	22	9	43	17	48	22	27	23	29	17	83	41	381
08:45 09:00	38	8	13	18	83	30	21	17	47	17	75	41	408
AM Peak Hour	109	28	110	93	259	96	122	64	145	81	295	137	1539
07:00 08:00	83	30	106	85	190	28	145	36	136	70	244	58	1211
08:00 09:00	109	28	110	93	259	96	122	64	145	81	295	137	1539
		Ped 1			Ped 2			Ped 3			Ped 4		Total Peds
07:00 08:00		8			5			4			10		27
08:00 09:00		13			9			19			15		56
					PM Pe	ak Period Vo	lume Data						
	R	egency Park D	rive		Lacewood Driv	/e		Parkland Driv	e		Lacewood Driv	/e	
Time	No	rthbound Appro	oach	We	stbound Appro	bach	Sou	uthbound App	oach	Ea	stbound Appro	bach	Total
	А	В	С	D	E	F	G	Н	I	J	K	L	venicies
16:00 16:15	49	25	28	43	135	30	31	21	48	67	113	39	629
16:15 16:30	34	22	23	42	114	27	27	16	39	56	123	40	563
16:30 16:45	35	16	35	41	108	36	28	22	36	57	123	41	578
16:45 17:00	36	10	25	34	119	37	26	22	47	52	139	62	609
17:00 17:15	50	8	44	24	134	28	33	22	35	53	145	62	638
17:15 17:30	39	9	25	25	130	26	20	12	41	63	109	40	539
17:30 17:45	42	12	21	30	130	42	38	26	40	49	1/159	59	562
PM Peak Hour	167	38	121	119	513	133	117	72	163	217	552	223	2435
16:00 17:00	154	73	111	160	476	130	112	81	170	232	498	182	2379
17:00 18:00	157	40	116	107	492	119	124	76	143	234	561	219	2388
	1	Ped 1			Ped 2			Ped 3			Ped 4		Total Peds
16:00 17:00		19			6			23			10		58
17:00 18:00		17			3			12			14		46

Wa	Tab ashmill Bent	le A-2 Lake Drive @ ly Drive	e	К L	+	Washr ed 4 Ped 2 Ped 1	nill Lake Drive	E D
PM Pi AM I	Halii Peak: Wedne Peak: Thurs	<i>fax, NS</i> esday, June 21, 20 sday, June 22, 202	123 13		Bently	A C	•	
			AM Pea	ak Period Vo	lume Data			
Time		Bently Northbound	Drive d Approach	Washmill Westbound	Lake Drive d Approach	Washmill Eastbound	Lake Drive I Approach	Total Vehicles
		A	U C	D	E	ĸ	L	
07:00 0	07:15	3	20	3	65	63	2	156
07:15 0	07:30	2	14	4	89	58	2	169
07:30 0	07:45	2	25	6	79	55	0	167
07:45 0	08:00	4	15	8	122	80	2	231
08:00 0	08:15	5	27	8	102	86	2	230
08:15 0	08:30	7	18	11	112	80	6	234
08:30 0	08:45	4	25	5	118	88	3	243
08:45 (09:00	3	8	8	126	64	3	212
AM Peak H	our	20	85	32	454	334	13	938
07:00 0	08:00	11	74	21	355	256	6	723
08:00 0	09:00	19	78	32	458	318	14	919
		Pe	d 1	Pe	d 2	Pe	d 4	Total Peds
07:00 0	08:00	7	7		4		0	11
08:00 0	09:00	6	6		5		0	11
			PM Poa	k Period Vo	lumo Data			
		Ronth	Drive	Washmill		W/achmill	l ake Drive	1
Time		Northbourg	Annroach	Weethour	Δnnroach	Faethound	Annroach	Total
rinie								Vehicles
16.00 1	16.15	<u>л</u>	11	15	159	17/	L Q	370
16.15	16.30	ч 2	7	16	161	150	5	3/0
16:30	16:45		16	10	161	181	6	378
16:45	17.00	- - 	8	20	174	100	a 0	413
17:00	17.00	4	10	21	153	219	9	416
17:15	17:30	4	13	19	147	169	7	359
17:30	17:45	3	13	17	144	163	13	353
17:45	18:00	5	18	14	170	147	8	362
PM Peak H	our	15	47	70	635	768	31	1566
16:00	17:00	14	42	61	654	704	28	1503
17:00	18:00	16	54	71	614	698	37	1490
			d 1	<u></u> Ро	d 2	Po	d 4	Total Pede
16:00 1	17:00		5		<u>-</u> 1		<u> </u>	6
17:00 1	18:00		2		3		0	5

Table A-3 Lacewood Drive @ Parkland Drive/Regency Park Drive Halifax, NS PM Peak: Tuesday, April 23, 2024 AM Peak: Wednesday, April 24, 2024	
AM Peak Period Volume Data	
Regency Park Drive Lacewood Drive Parkland Drive Lacewood Drive Time Northbound Approach Westbound Approach Southbound Approach Eastbound Approach	Total Vehicles
A B C D E F G II J N 07:00 07:15 14 5 31 6 40 14 23 5 30 15 48	16 266
	6 288
07:30 07:45 17 11 20 18 63 22 31 6 37 24 91	15 355
07:45 08:00 20 11 33 23 76 25 45 18 36 19 107	20 433
08:00 08:15 33 12 33 13 63 29 52 16 47 24 108	29 459
08:15 08:30 34 10 33 24 89 20 44 8 29 26 116	33 466
<u>08:30</u> 08:45 26 12 24 25 68 17 19 20 30 21 105	410
<u>08:45</u> <u>09:00</u> <u>18</u> <u>21</u> <u>6</u> <u>26</u> <u>83</u> <u>18</u> <u>28</u> <u>24</u> <u>38</u> <u>67</u> <u>76</u>	9 414
AM Peak Hour 113 45 123 85 296 91 160 62 142 90 436	25 1768
07:00 08:00 70 30 105 55 230 83 135 41 143 77 306	i7 1342
08:00 09:00 111 55 96 88 303 84 143 68 144 138 405	14 1/49
Péd 1 Péd 2 Péd 3 Péd 4	I otal Peds
07:00 08:00 8 5 9 7	29
0.00 03.00 11 0 12 /	36
Midday Peak Period Volume Data	
Regency Park Drive Lacewood Drive Parkland Drive Lacewood Drive	
	Total

Ті	ime	Nort	hbound Appr	roach	Wes	Westbound Approach Southbound Approach Eastbound Approach						Total Vehicles		
		А	В	С	D	E	F	G	Н	I	J	K	L	venicies
11:30	11:45													0
11:45	12:00													0
12:00	12:15													0
12:15	12:30													0
12:30	12:45													0
12:45	13:00													0
13:00	13:15													0
13:15	13:30													0
Midday F	Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30	12:30	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30	13:30	0	0	0	0	0	0	0	0	0	0	0	0	0
			Ped 1			Ped 2			Ped 3			Ped 4		Total Peds
11:30	12:30													0
12:30	13:30													0

						PM Pea	ak Period Vo	lume Data						
		Reg	gency Park D	rive	L	acewood Driv	ve	F	Parkland Driv	e	L	acewood Dri	ve	Tatal
Ti	me	Nort	hbound Appr	oach	Wes	stbound Appr	oach	Sout	hbound Appi	roach	Eas	tbound Appro	bach	I Otal Vehicles
		A	В	С	D	E	F	G	н	I	J	к	L	venicles
16:00	16:15	49	22	24	41	134	32	28	16	38	77	131	36	628
16:15	16:30	46	28	30	36	130	49	30	15	52	65	146	47	674
16:30	16:45	33	22	27	39	121	39	35	17	34	69	139	41	616
16:45	17:00	26	16	8	42	146	24	37	26	39	70	152	25	611
17:00	17:15	26	17	29	26	150	43	29	19	48	62	120	38	607
17:15	17:30	27	16	16	50	134	41	28	19	41	69	169	45	655
17:30	17:45	32	14	30	28	106	28	35	13	51	64	161	53	615
17:45	18:00	41	23	19	42	131	38	37	18	45	36	151	58	639
PM Pea	ak Hour	154	88	89	158	531	144	130	74	163	281	568	149	2529
16:00	17:00	154	88	89	158	531	144	130	74	163	281	568	149	2529
17:00	18:00	126	70	94	146	521	150	129	69	185	231	601	194	2516
			Ped 1			Ped 2			Ped 3			Ped 4		Total Peds
16:00	17:00		7			12			22			12		53
17:00	18:00		8			15			22			16		61

							Highway On-Ra	mp		
		Table A-	4							
								La	cewood Drive	
	La	acewood D)rive				Ped 3			
		@				к —	➡ Ped 4 Ped	2 -	F	
	Highv	vay 102 NE	8 Ramps			i.	Ped 1		-	
					Lac	ewood Drive	117	▶		
		Halifax, NS	5							
	PM Pe	eak: Tuesday, Apr	il 23, 2024				ABC			
	AM Pea	ak: Wednesday, Ap	pril 24, 2024				Highway Off-Rai	mp		
				<u> </u>						
			abway Off Par	AN	Peak Peric	od Volume Da	ata	Lacowa	od Drivo	
г	Time	Nor	thbound Appro	np ach	Westbour	nd Approach	Righway On-Ramp	Eastbound	d Approach	Total
	inic	A	B	C	E	F		J	К	Vehicles
07:00	07:15	10	0	48	90	26		17	50	241
07:15	07:30	14	0	47	106	39		26	71	303
07:30	07:45	17	0	78	102	47		26	98	368
07:45	08:00	15	0	72	130	47		29	117	410
08:00	08:15	14	0	75	129	54		23	114	409
08:15	08:30	22	0	79	119	60		50	135	465
08:30	08:45	29	0	98	123	51		45	130	476
08:45	09:00	40	1	360	537	210	0	00 176	503	1907
07.00	08.00	56	0	245	428	159	0	98	336	1307
08:00	09:00	111	1	360	537	219	0	176	503	1907
			Ped 1		Pe	ed 2	Ped 3	Pe	ed 4	Total Peds
07:00	08:00		8			0	0		0	8
08:00	09:00		3			0	0		0	3
_										
			0	Mido	lay Peak Pe	riod Volume	Data		10.1	
г	Timo	HI	ghway Off-Rar	np	Lacewo	od Drive	Highway On-Ramp	Lacewo	od Drive	Total
	IIIC	Δ	B	C.	F	F		Lasubouri	к	Vehicles
11:30	11:45	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5	Ű	E			ů		0
11:45	12:00									0
12:00	12:15									0
12:15	12:30									0
12:30	12:45									0
12:45	13:00									0
13:00	13:15									0
Midday	Peak Hour	0	0	0	0	0	0	0	0	0
11:30	12:30	0	0	0	0	0	0	0	0	0
12:30	13:30	0	0	0	0	0	0	0	0	0
			Ped 1		Pe	ed 2	Ped 3	Pe	ed 4	Total Peds
11:30	12:30									0
12:30	13:30									0
				PN	Peak Peric	d Volume Da	ata			
<u> </u>		Hi	ghway Off-Rar	np	Lacewo	ood Drive	Highway On-Ramp	Lacewo	od Drive	
г	Time	Nor	thbound Appro	ach	Westbour	nd Approach	Southbound Approach	Eastbound	d Approach	Total Vehiclos
		А	В	С	E	F		J	К	venioles
16:00	16:15	69	1	89	239	89		210	216	913
16:15	16:30	73	1	107	250	56		216	226	929
16:30	16:45	63	0	97	230	69		153	239	851
16:45	17:00	78	0	74 82	223	66		152	217	813
17:15	17:30	53	1	102	210	59		205	274	904
17:30	17:45	62	0	88	184	77		133	252	796
17:45	18:00	48	1	102	231	64		111	228	785
PM Pe	ak Hour	283	3	367	942	282	0	731	898	3506
16:00	17:00	283	3	367	942	282	0	731	898	3506
17:00	18:00	231	2	374	834	266	0	619	968	3294
			Ped 1		Pe	ed 2	Ped 3	Pe	ed 4	Total Peds
16:00	17:00		12			0	0		0	12
17:00	18:00		17			U	1		U	18

1						Hi	ghway Off-Rai	mp		
							IHG			
		Table A-5								
							4 I P	Lac	cewood Drive	
	La	cewood Drive					Ped 3			
	Highw	av 102 SB Ramps			к		Ped 4 Ped	2	E D	
	ingitwo				L	- ↓	Pod 1	•	-	
						' <	reui	≯		
					Lacewood Dri	ve				
		Halifax, NS								
	Midday, PM	Peaks: Tuesday, April 23, 2024								
	AM Peak:	Wednesday, April 24, 2024				Hig	hway On-Ram	p		
						•				
			· ·	AM Peak Pe	eriod Volume	Data				1
- T	- Inc. e	Highway On-Ramp	Lacewo	od Drive	Hi	ighway Off-Rai	np	Lacewo	od Drive	Total
·	Ime	Northbound Approach	Nestbound	a Approach	6	ипропиа Арри н	Jach	Eastbound	d Approach	Vehicles
07:00	07:15		60	48	28	0	70	50	2	258
07:15	07:30		56	57	40	0	85	54	6	298
07:30	07:45		44	75	64	0	91	87	2	363
07:45	08:00		41	125	64	1	152	77	14	474
08:00	08:15		52	93	67	0	114	74	18	418
08:15	08:30		49	96	77	0	96	117	9	444
08:30	08:45		44	106	74	0	123	117	18	482
08:45	09:00	0	57	144	59	0	141	101	15	517
		0	202	439	2// 106	1	4/4	409	24	1001
07:00	09:00	0	201	439	277	0	474	409	60	1861
00.00	00.00	Ped 1	Pe	d 2		Ped 3	-11-1	Pe	ed 4	Total Peds
07:00	08:00	5		1		0			0	6
08:00	09:00	3		0		0			0	3
			N	lidday Peak	Period Volun	ne Data				
		Highway On-Ramp	Lacewo	od Drive	Hi	ighway Off-Rai	np	Lacewo	od Drive	Tatal
Т	ime	Northbound Approach	Westbound	d Approach	Sou	thbound Appro	bach	Eastbound	d Approach	l otal Vohiclos
										VEIIIIJES
			D	E	G	Н	I	К	L	Venicies
11:30	11:45		D 68	E 236	G 42	H 0	l 151	К 288	L 77	862
11:30 11:45	11:45 12:00		D 68 87	E 236 266	G 42 51	H 0 0	l 151 120	K 288 231	L 77 70	862 825
11:30 11:45 12:00 12:15	11:45 12:00 12:15 12:20		D 68 87 106 70	E 236 266 278 246	G 42 51 39 72	H 0 0	l 151 120 144 154	K 288 231 248 272	L 77 70 76 74	862 825 891
11:30 11:45 12:00 12:15 12:30	11:45 12:00 12:15 12:30 12:45		D 68 87 106 70 70	E 236 266 278 246 219	G 42 51 39 72 52	H 0 0 1	I 151 120 144 154 143	K 288 231 248 272 316	L 77 70 76 74 103	862 825 891 889 903
11:30 11:45 12:00 12:15 12:30 12:45	11:45 12:00 12:15 12:30 12:45 13:00		D 68 87 106 70 70 65	E 236 266 278 246 219 230	G 42 51 39 72 52 33	H 0 0 1 0 0	I 151 120 144 154 143 131	К 288 231 248 272 316 289	L 77 70 76 74 103 84	862 825 891 889 903 832
11:30 11:45 12:00 12:15 12:30 12:45 13:00	11:45 12:00 12:15 12:30 12:45 13:00 13:15		D 68 87 106 70 70 65 65	E 236 266 278 246 219 230 231	G 42 51 39 72 52 33 49	H 0 0 1 0 0 0 0 0	I 151 120 144 154 143 131 128	К 288 231 248 272 316 289 265	L 77 70 76 74 103 84 88	862 825 891 889 903 832 826
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30		D 68 87 106 70 70 65 65 65 68	E 236 266 278 246 219 230 231 242	G 42 51 39 72 52 33 49 37	H 0 0 1 0 0 0 1	I 151 120 144 154 143 131 128 115	K 288 231 248 272 316 289 265 315	L 77 70 76 74 103 84 88 71	862 825 891 889 903 832 826 849
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday F	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour	0	D 68 87 106 70 70 65 65 65 68 311	E 236 266 278 246 219 230 231 242 973	G 42 51 39 72 52 33 49 37 196	H 0 0 1 0 0 0 1 1 1	I 151 120 144 154 143 131 128 115 572	K 288 231 248 272 316 289 265 315 1125	L 77 70 76 74 103 84 88 71 337	862 825 891 889 903 832 826 849 3515
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday F 11:30	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour 12:30	0 0	D 68 87 106 70 70 65 65 65 68 311 331	E 236 266 278 246 219 230 231 242 973 1026	G 42 51 39 72 52 33 49 37 196 204	H 0 0 1 0 0 0 1 1 1 1	I 151 120 144 154 143 131 128 115 572 569	К 288 231 248 272 316 289 265 315 1125 1039	L 77 70 76 74 103 84 88 71 337 297	862 825 891 889 903 832 826 849 3515 3467
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday F 11:30 12:30	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour 12:30 13:30	0 0 0 0	D 68 87 106 70 70 65 65 65 68 311 331 268	E 236 266 278 246 219 230 231 242 973 1026 922 4 2	G 42 51 39 72 52 33 49 37 196 204 171	H 0 0 1 0 0 0 1 1 1 1 2 8 2 2	l 151 120 144 154 143 131 128 115 572 569 517	K 288 231 248 272 316 289 265 315 1125 1039 1185	L 77 70 76 74 103 84 88 71 337 297 346	862 825 891 889 903 832 826 849 3515 3467 3410 Total Parts
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday F 11:30 12:30	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour 12:30 13:30	0 0 0 Ped 1	D 68 87 106 70 70 65 65 65 65 68 311 331 268 Pe	E 236 266 278 246 219 230 231 242 973 1026 922 d 2	G 42 51 39 72 52 33 49 37 196 204 171	H 0 0 1 0 0 0 1 1 1 1 Ped 3	l 151 120 144 154 143 131 128 115 572 569 517	К 288 231 248 272 316 289 265 315 1125 1039 1185 Ре	L 77 70 76 74 103 84 88 71 337 297 346 ed 4	862 825 891 889 903 832 826 849 3515 3467 3410 Total Peds
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday F 11:30 12:30	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour 12:30 13:30	0 0 0 Ped 1 15 11	D 68 87 106 70 70 65 65 65 68 311 331 268 Pe	E 236 266 278 246 219 230 231 242 973 1026 922 d 2 0 0	G 42 51 39 72 52 33 49 37 196 204 171	H 0 0 1 0 0 0 1 1 1 1 Ped 3 0 0	l 151 120 144 154 143 131 128 115 572 569 517	К 288 231 248 272 316 289 265 315 1125 1039 1185 Ре	L 77 70 76 74 103 84 88 71 337 297 346 ed 4 0 0	862 825 891 889 903 832 826 849 3515 3467 3410 Total Peds 15 11
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday F 11:30 12:30	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour 12:30 13:30 12:30 13:30	0 0 0 Ped 1 15 11	D 68 87 106 70 70 65 65 65 68 311 331 268 Pe	E 236 266 278 246 219 230 231 242 973 1026 922 d 2 0 0	G 42 51 39 72 52 33 49 37 196 204 171	H 0 0 1 0 0 0 1 1 1 1 Ped 3 0 0 0	l 151 120 144 154 143 131 128 115 572 569 517	К 288 231 248 272 316 289 265 315 1125 1039 1185 Ре	L 77 70 76 74 103 84 88 71 337 297 346 ed 4 0 0	862 825 891 889 903 832 826 849 3515 3467 3410 Total Peds 15 11
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday F 11:30 12:30 11:30 12:30	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour 12:30 13:30 12:30 13:30	0 0 0 Ped 1 15 11 Highway On-Ramp	D 68 87 106 70 70 65 65 65 68 311 331 268 Pe 40 70 70 70 70 70 70 70 70 70 70 70 70 70	E 236 266 278 246 219 230 231 242 973 1026 922 d 2 0 0 PM Peak Pe od Drive	G 42 51 39 72 52 33 49 37 196 204 171	H 0 0 1 0 0 0 1 1 1 1 1 Ped 3 0 0 0 0 2 Data	I 151 120 144 154 143 131 128 115 572 569 517	К 288 231 248 272 316 289 265 315 1125 1039 1185 Ре	L 77 70 76 74 103 84 88 71 337 297 346 ed 4 0 0	862 825 891 889 903 832 826 849 3515 3467 3410 Total Peds 15 11
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday H 11:30 12:30 11:30 12:30	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour 12:30 13:30 12:30 13:30	0 0 0 Ped 1 15 11 Highway On-Ramp Northbound Approach	D 68 87 106 70 70 65 65 65 68 311 331 268 Pe 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	E 236 266 278 246 219 230 231 242 973 1026 922 d 2 0 0 PM Peak Pe od Drive d Approach	G 42 51 39 72 52 33 49 37 196 204 171 •••••••••••••••••••••••••••••••••••	H 0 0 1 0 0 1 1 1 1 1 Ped 3 0 0 0 9 Data ighway Off-Rau	I 151 120 144 154 143 131 128 115 572 569 517	K 288 231 248 272 316 289 265 315 1125 1039 1185 Pe Lacewo Eastbourn	L 77 70 76 74 103 84 88 71 337 297 346 ed 4 0 0 0	862 825 891 889 903 832 826 849 3515 3467 3410 Total Peds 15 11
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday H 11:30 12:30 11:30 12:30	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour 12:30 13:30 12:30 13:30	0 0 0 Ped 1 15 11 Highway On-Ramp Northbound Approach	D 68 87 106 70 70 65 65 65 68 311 331 268 Pe 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	E 236 266 278 246 219 230 231 242 973 1026 922 d 2 0 0 PM Peak Pe od Drive d Approach E	G 42 51 39 72 52 33 49 37 196 204 171 •••••••••••••••••••••••••••••••••••	H 0 0 1 0 0 1 1 1 1 1 Ped 3 0 0 0 9 Data ighway Off-Rau	I 151 120 144 154 143 131 128 115 572 569 517 mp pach	К 288 231 248 272 316 289 265 315 1125 1039 1185 Ре Сасечко Еаstbound	L 77 70 76 74 103 84 88 71 337 297 346 ed 4 0 0 0 0	862 825 891 889 903 832 826 849 3515 3467 3410 Total Peds 15 11 Vehicles
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday H 11:30 12:30 11:30 12:30 T T 16:00	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour 12:30 13:30 12:30 13:30	0 0 0 Ped 1 15 11 Highway On-Ramp Northbound Approach	D 68 87 106 70 65 65 68 311 331 268 Pe 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	E 236 266 278 246 219 230 231 242 973 1026 922 d 2 0 0 PM Peak Pe od Drive d Approach E 234	G 42 51 39 72 52 33 49 37 196 204 171 •••••••••••••••••••••••••••••••••••	H 0 0 1 0 0 1 1 1 1 1 Ped 3 0 0 0 9 Data ighway Off-Rai uthbound Appro H 0	I 151 120 144 154 143 131 128 115 572 569 517 mp bach I 108	К 288 231 248 272 316 289 265 315 1125 1039 1185 Ре Сасемо Еаstbound К 401	L 77 70 76 74 103 84 88 71 337 297 346 ed 4 0 0 0 0 0 0 0 0 0	862 862 825 891 889 903 832 826 849 3515 3467 3410 Total Peds 15 11 Vehicles 937
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday F 11:30 12:30 11:30 12:30 T 11:30 12:30	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour 12:30 13:30 12:30 13:30	0 0 0 Ped 1 15 11 Highway On-Ramp Northbound Approach	D 68 87 106 70 70 65 68 311 331 268 Pe 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	E 236 266 278 246 219 230 231 242 973 1026 922 d 2 0 0 PM Peak Pe od Drive d Approach E 234 220	G 42 51 39 72 52 33 49 37 196 204 171 Control Control Control Control Control	H 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	I 151 120 144 154 143 131 128 115 572 569 517 mp bach I 108 129	К 288 231 248 272 316 289 265 315 1125 1039 1185 Ре Сасечко Еаstbound К 401 345	L 77 70 76 74 103 84 88 71 337 297 346 ed 4 0 0 0 b od Drive d Approach L 62 72	862 825 891 889 903 832 826 849 3515 3467 3410 Total Peds 15 11 Vehicles 937 929
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday H 11:30 12:30 11:30 12:30 T 11:30 12:30	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour 12:30 13:30 13:30 13:30	0 0 0 Ped 1 15 11 Highway On-Ramp Northbound Approach	D 68 87 106 70 70 65 68 311 331 268 Pe 4 4 4 4 5 6 7 94 88 8 8 7	E 236 266 278 246 219 230 231 242 973 1026 922 d 2 0 0 PM Peak Pe od Drive d Approach E 234 220 246	G 42 51 39 72 52 33 49 37 196 204 171 Contemporal Fried Volume Hit Sout G 65 69 64	H 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 	I 151 120 144 154 143 131 128 115 572 569 517 mp bach I 108 129 122	K 288 231 248 272 316 289 265 315 1125 1039 1185 Pe Lacewo Eastbound K 401 345 308	L 77 70 76 74 103 84 88 71 337 297 346 ed 4 0 0 Drive d Approach L 62 72 69	862 862 825 891 889 903 832 826 849 3515 3467 3410 Total Peds 15 11 Vehicles 937 929 897
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday H 11:30 12:30 11:30 12:30 11:30 12:30	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour 12:30 13:30 13:30 13:30	0 0 0 Ped 1 15 11 Highway On-Ramp Northbound Approach	D 68 87 106 70 70 65 68 311 331 268 Pe 4 4 4 88 75 67 94 88 75	E 236 266 278 246 219 230 231 242 973 1026 922 d 2 0 0 PM Peak Pe od Drive d Approach E 234 220 246 190 241	G 42 51 39 72 52 33 49 37 196 204 171 196 204 171 171 Control Control Control	H 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I 151 120 144 154 143 131 128 115 572 569 517 mp 517 np bach I 108 129 122 134	K 288 231 248 272 316 289 265 315 1125 1039 1185 Pe Lacewo Eastbound K 401 345 308 347 201	L 77 70 76 74 103 84 88 71 337 297 346 ed 4 0 0 0 0 0 0 0 0 0 0 0 0 0	862 862 825 891 889 903 832 826 849 3515 3467 3410 Total Peds 15 11 Vehicles 937 929 897 884 921
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday I 11:30 12:30 11:30 12:30 11:30 12:30 11:30 12:30	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour 12:30 13:30 13:30 13:30 13:30	0 0 0 Ped 1 15 11 Highway On-Ramp Northbound Approach	D 68 87 106 70 70 65 68 311 331 268 Pe 40 C C C C C C C C C C C C C C C C C C	E 236 266 278 246 219 230 231 242 973 1026 922 d 2 0 0 PM Peak Pe od Drive d Approach E 234 220 246 190 214	G 42 51 39 72 52 33 49 37 196 204 171 196 204 171 171 Control Control	H 0 0 0 1 0 0 1 1 1 1 Ped 3 0 0 0 0 0 0 0 0 0 0 0 0 0	I 151 120 144 154 143 131 128 115 572 569 517 517 N N N N N N N N N N N N N N N N N N N	K 288 231 248 272 316 289 265 315 1125 1039 1185 Pe Lacewo Eastbound K 401 345 308 347 304 272	L 77 70 76 74 103 84 88 71 337 297 346 ed 4 0 0 0 0 0 0 0 0 0 0 0 0 0	862 862 825 891 889 903 832 826 849 3515 3467 3410 Total Peds 15 11 Vehicles 937 929 897 884 824 957
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday I 11:30 12:30 11:30 12:30 11:30 12:30 11:30 12:30	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour 12:30 13:30 13:30 13:30 13:30	0 0 0 Ped 1 15 11 Highway On-Ramp Northbound Approach	D 68 87 106 70 70 65 65 68 311 331 268 Pe 4 4 88 75 69 94 56	E 236 266 278 246 219 230 231 242 973 1026 922 d 2 0 0 PM Peak Pe 0 0 PM Peak Pe 234 220 246 190 244 190 234 224 190 244 190 234 226 190 244 190 234 245 1026 10	G 42 51 39 72 52 33 49 37 196 204 171 204 171 C C C C C C C C C C	H 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I 151 120 144 154 143 131 128 115 572 569 517 517 N N N N N N N N N N N N N N N N N N N	K 288 231 248 272 316 289 265 315 1125 1039 1185 Pe C C C C C C C C C C C C C	L 77 70 76 74 103 84 88 71 337 297 346 ed 4 0 0 0 0 0 0 0 0 0 0 0 0 0	862 862 825 891 889 903 832 826 849 3515 3467 3410 Total Peds 15 11 Vehicles 937 929 897 884 824 955 818
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday I 11:30 12:30 11:30 12:30 11:30 12:30 11:30 12:30 11:30 12:30	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour 12:30 13:30 13:30 13:30 13:30 13:30 13:30 13:30 13:30 13:30 13:30 13:30 13:30 13:30	0 0 Ped 1 15 11 Highway On-Ramp Northbound Approach	D 68 87 106 70 70 65 65 68 311 331 268 Pe 0 U U U U U U U U U U U U U U U U U U	E 236 266 278 246 219 230 231 242 973 1026 922 d 2 0 0 PM Peak Pe 0 0 PM Peak Pe 234 220 246 190 214 167 189 220	G 42 51 39 72 52 33 49 37 196 204 171 196 204 171 171 C C C 6 5 6 9 6 6 6 6 6 6 5 6 9 6 4 6 6 6 6 5 6 9 6 4 6 6 6 5 6 9 6 4 6 6 7 100 7 7 172 196 204 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171	H 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0	I 151 120 144 154 143 131 128 115 572 569 517 517 I 08 129 122 134 87 136 115 102	К 288 231 248 272 316 289 265 315 1125 1039 1185 Ре Сасемо Еаstbound К 401 345 308 347 304 371 297 251	L 77 70 76 74 103 84 88 71 337 297 346 ed 4 0 0 0 b b c c c c c c c c	862 862 825 891 889 903 832 826 849 3515 3467 3410 Total Peds 15 11 Vehicles 937 929 897 884 824 955 818 789
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday H 11:30 12:30 11:30 12:30 11:30 12:30 11:30 12:30 11:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour 12:30 13:30	0 0 Ped 1 15 11 Highway On-Ramp Northbound Approach	D 68 87 106 70 70 65 65 68 311 268 Pe 4 4 4 4 88 75 69 94 88 75 69 94 56 85 324	E 236 266 278 246 219 230 231 242 973 1026 922 d 2 0 0 PM Peak Pe 0 0 PM Peak Pe 0 0 PM Peak Pe 1 1 0 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1	G 42 51 39 72 52 33 49 37 196 204 171 9 204 171 171 9 196 204 171 171 9 6 6 6 5 6 9 6 4 6 6 6 6 5 6 9 6 4 6 6 6 5 6 9 6 4 6 6 5 6 9 6 4 6 5 6 9 6 4 6 5 6 9 6 6 6 7 2 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171171	H 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0	I 151 120 144 154 143 131 128 115 572 569 517 517 108 129 122 134 87 136 115 102 493	К 288 231 248 272 316 289 265 315 1125 1039 1185 Ре С Сасемо Еаstbourn К 401 345 308 347 304 371 297 251 1401	L 777 70 76 74 103 84 88 71 337 297 346 ed 4 0 0 0 0 0 0 0 0 0 0 0 0 0	862 862 825 891 889 903 832 826 849 3515 3467 3410 Total Peds 15 11 Vehicles 937 929 897 884 824 955 818 789 3647
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday H 11:30 12:30 11:30 12:30 11:30 12:30 11:30 12:30 11:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour 12:30 13:30	0 0 Ped 1 15 11 Highway On-Ramp Northbound Approach	D 68 87 106 70 70 65 65 68 311 268 Pe 4 4 4 4 4 56 88 75 69 94 88 75 69 94 56 85 324 324	E 236 266 278 246 219 230 231 242 973 1026 922 d 2 0 0 PM Peak Pe 0 0 PM Peak Pe 234 220 246 190 214 167 189 220 890 890	G 42 51 39 72 52 33 49 37 196 204 171 196 204 171 171 Contemporal 6 6 6 6 6 6 6 6 6 6	H 0 0 1 0 0 1 1 1 1 1 1 Ped 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	I 151 120 144 154 143 131 128 115 572 569 517 569 517 I 108 129 122 134 87 136 115 102 493 493	К 288 231 248 272 316 289 265 315 1125 1039 1185 Ре С Сасемо Еаstbourn К 401 345 308 347 304 371 297 251 1401	L 777 70 76 74 103 84 88 71 337 297 346 ed 4 0 0 0 0 1 1 1 1 1 1 1 1	862 862 825 891 889 903 832 826 849 3515 3467 3410 Total Peds 15 11 Vehicles 937 929 897 884 824 955 818 789 3647
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday H 11:30 12:30 11:30 12:30 11:30 12:30 11:30 12:30 11:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:45 12:30 12:	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour 12:30 13:30	0 0 0 Ped 1 15 11 Highway On-Ramp Northbound Approach Northbound Approach	D 68 87 106 70 70 65 65 68 311 268 Pe 70 70 70 70 70 70 70 70 70 70 70 70 70	E 236 266 278 246 219 230 231 242 973 1026 922 d 2 0 0 PM Peak Pe 0 0 PM Peak Pe 234 220 246 190 214 167 189 220 890 890 790	G 42 51 39 72 52 33 49 37 196 204 171 9 204 171 171 9 6 6 5 6 9 6 6 6 5 6 9 6 4 6 4 6 4 6 4 6 7 2 6 1 1 1 1 1 1 1 1 1 1	H 0 0 1 0 0 1 1 1 1 1 1 Ped 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	I 151 120 144 154 143 131 128 115 572 569 517 569 517 I 108 129 122 134 87 136 115 102 134 87 136 115 102 493 493 440	К 288 231 248 272 316 289 265 315 1125 1039 1185 Ре С С С С С С С С С С С С С	L 77 70 76 74 103 84 88 71 337 297 346 ed 4 0 0 ed 4 0 0 ed 4 0 0 1 1 1 1 1 1 1 1	862 862 825 891 889 903 832 826 849 3515 3467 3410 Total Peds 15 11 Vehicles 937 929 897 884 824 955 818 789 3647 3386
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday F 11:30 12:30 11:30 12:30 11:30 12:30 7 7 7 16:00 16:15 16:30 16:45 17:00 17:15 17:30 17:45 PM Pe 16:00	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour 12:30 13:30 13:30 12:30 13:30	0 0 0 Ped 1 15 11 Highway On-Ramp Northbound Approach Northbound Approach 0 0 0 0 0 0 0 0 0 0	D 68 87 106 70 70 65 65 68 311 268 Pe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E 236 266 278 246 219 230 231 242 973 1026 922 d 2 0 0 PM Peak Pe 0 0 PM Peak Pe 234 220 246 190 234 220 246 190 214 167 189 220 890 890 790 d 2	G 42 51 39 72 52 33 49 37 196 204 171 204 171 171 100 79 64 64 64 73 100 79 72 262 262 324	H 0 0 1 0 0 1 1 1 1 1 1 1 Ped 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	I 151 120 144 154 143 131 128 115 572 569 517 569 517 108 129 122 134 87 122 134 87 136 115 102 493 493 440	К 288 231 248 272 316 289 265 315 1125 1039 1185 Ре С С С С С С С С С С С С С	L 777 70 76 74 103 84 88 71 337 297 346 ed 4 0 0 0 1 1 1 1 1 1 1 1	862 862 825 891 889 903 832 826 849 3515 3467 3410 Total Peds 15 11 Vehicles 937 929 897 884 824 955 818 789 3647 3386 Total Peds
11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 Midday H 11:30 12:30 11:30 12:30 11:30 12:30 11:30 12:30 11:30 12:30 11:30 12:	11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 Peak Hour 12:30 13:30	0 0 0 Ped 1 15 11 Highway On-Ramp Northbound Approach Northbound Approach 0 0 0 0 0 0 0 0 0 12	D 68 87 106 70 70 65 65 68 311 268 Pe 0 0 0 0 0 0 0 0 0 0 0 0 0	E 236 266 278 246 219 230 231 242 973 1026 922 d 2 0 0 PM Peak Pe 0 0 PM Peak Pe 234 220 246 190 214 167 189 220 890 890 890 790 d 2 0	G 42 51 39 72 52 33 49 37 196 204 171 171 196 204 171 171 100 79 64 64 64 73 100 79 72 262 262 324	H 0 0 1 0 0 1 1 1 1 1 Ped 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	I 151 120 144 154 143 131 128 115 572 569 517 569 517 108 129 122 134 87 136 115 102 493 493 440	К 288 231 248 272 316 289 265 315 1125 1039 1185 Pe	L 77 70 76 74 103 84 88 71 337 297 346 ed 4 0 0 0 0 0 0 0 0 0 0 0 0 0	862 852 891 889 903 832 826 849 3515 3467 3410 Total Peds 15 11 Vehicles 937 929 897 884 824 955 818 789 3647 3386 Total Peds 12

				Dunbrack Street							
				ін							
	Tab	le A-6					11				
				Wa	ashmill Lake D	↓↓					
	Dunbra	ack Street									
		@			3						
	Washmill	l Lake Driv	е			Feu 4					
				$ \bigvee Ped 1 \rightarrow$							
								4 1			
								A B			
	Halii	fax, NS									
	Tuesday, No	vember 19, 2024					Dunbra	ack Street			
			AM Pea	k Period Vo	lume Data						
		Dunbra	ck Street	Dunbrad	ck Street	Washmill	Lake Drive				
Ti	me	Northboun	d Approach	Southboun	d Approach	Eastbound	d Approach	Total			
		A B		H I		J	L				
07:00	07:15	30	165	93	6	9	51	354			
07:15	07:30	59	204	99	4	6	87	459			
07:30	07:45	42	173	112	6	7	79	419			
07:45	08:00	100	216	136	6	6	93	557			
08:00	08:15	77	180	117	11	8	75	468			
08:15	08:30	72	161	146	17	13	77	486			
08:30	08:45	67	140	139	12	7	60	425			
08:45	09:00	85	151	106	6	9	64	421			
AM Pea	ak Hour	316	697	538	46	34	305	1936			
07:00	08:00	231	758	440	22	28	310	1789			
08:00	09:00	301	632	508	46	37	276	1800			
		Pe	d 1	Pe	d 3	Pe	Total Peds				
07:00	7:00 08:00 26		1	6		45					
08:00	09:00	5	9	4	0	1	100				
			514 5								
		D									
т:	mo	Dunbrack Street		Dunbrad	A Sueel	Factbourg		Total			
lime			а Арргоасті	Southbourn		Eastbound		Vehicles			
16.00	16.15	A	101	176	17	J	107	625			
16.00	16.15	99 102	191	1/0	17	10	127	637			
16:20	16:45	102	171	225	24	10	120	670			
16:45	17:00	138	180	171	10	15	99	622			
17:00	17:15	116	166	178	16	15	123	614			
17.15	17:30	121	181	169	17	13	115	616			
17:30	17:45	107	177	159	15	4	85	547			
17:45 18:00		120	179	114	12	14	79	518			
PM Peak Hour		442	729	770	75	59	479	2554			
16:00	17:00	442	729	770	75	59	479	2554			
17:00	18:00	464	703	620	60	46	402	2295			
	Ped 1		d 1	Pe	d 3	Pe	Total Peds				
16:00	6:00 17:00 0			3		8					
17:00	18:00		0	Į	5		5				

			Dunbrack Street										
						ін							
		Table A-7											
						↓↓	Hig	ghway 102 R	amps				
	D	unbrack Street	-			J	`						
		@							F				
High	way 102 N	B Ramps (Toward B	edford)					₽	D				
				-	Lhung 102 O	nromn	ו						
					HWY 102 O	nramp	t t						
		Halifax NS					В						
	Tue	sday, November 19, 2024											
					Dunbrack Street								
AM Peak Period Volume Data													
		Dunbrack Street	Highway 1	02 Ramps	Dunbra	ck Street	Hv	vy 102 Onrar	np	Total			
Т	Time	Northbound Approach	Westboun	d Approach	Southboun	d Approach	Eas	tbound Appro	pach	Vehicles			
		В	D	F	H I					venicies			
07:00	07:15	176	17	26	99	49				367			
07:15	07:30	227	20	26	136	57				466			
07:30	07:45	195	19	33	137	67				451			
07:45	08:00	267	19	38	146	66				536			
08:00	08:12	200	30	43	138	49				400			
08.15	08:45	174	22	40	140	54				491			
08:30	08.43	174	33	42 52	140	44				432			
AM Pe	ak Hour	857	102	160	577	248	0	0	0	1944			
07:00	08:00	865	75	123	518	239	0	0	0	1820			
08:00	09:00	746	119	183	561	213	0	0	0	1822			
	Midday Peak Period Volume Data												
Dunbrack Street Highwa Time Northbound Approach Westbo		Highway 1	02 Ramps	Dunbra	ck Street	Hwy 102 Onramp			Total				
		Northbound Approach Westbou		d Approach	Southbound Approach		Eastbound Approach			Vehicles			
		В	D	F	Н	I				 			
11:30	11:45	122	37	90	157	44				450			
11:45	12:00	149	31	84	157	42				463			
12:00	12:15	154	30	80	148	45				457			
12:15	12:30	141	42	76	162	53				474			
12:30	12:45	124	20	12	174	41				437			
13.45	13.00	140	27	78	169	40 54				473			
13:15	13:30	126	30	58	152	51				417			
Middav	Peak Hour	557	128	312	659	196	0	0	0	1852			
11:30	11:30 12:30 566		140	330	624	184	0	0	0	1844			
12:30	13:30	542	116	294	649	194	0	0	0	1795			
	PM Peak Period Volume Data												
				02 Ramps Dunbrack Street			Hv						
		Dunbrack Street	Highway 1	02 Ramps	Dunbra				•	Total			
т	īme	Dunbrack Street Northbound Approach	Highway 1 Westboun	02 Ramps d Approach	Southboun	d Approach	Eas	tbound Appro	pach	Total Vehicles			
т	-ime	Dunbrack Street Northbound Approach B	Highway 1 Westbound D	02 Ramps d Approach F	Southboun H	d Approach I	Eas J	tbound Appro	bach L	Total Vehicles			
16:00	ime 16:15	Dunbrack Street Northbound Approach B 185	Highway 1 Westbound D 53	02 Ramps d Approach F 100	Southboun H 225	d Approach I 88	Eas [:] J	tbound Appro K	bach L	Total Vehicles 651			
T 16:00 16:15	ime 16:15 16:30	Dunbrack Street Northbound Approach B 185 212	Highway 1 Westbound D 53 62	02 Ramps d Approach F 100 79	Southboun H 225 240	d Approach I 88 80	Eas J	tbound Appro K	L	Total Vehicles 651 673			
T 16:00 16:15 16:30	Time 16:15 16:30 16:45	Dunbrack Street Northbound Approach B 185 212 187 240	Highway 1 Westbound 53 62 66	02 Ramps d Approach F 100 79 108	Southboun H 225 240 255	d Approach I 88 80 94 70	Eas J	tbound Appro	L	Total Vehicles 651 673 710			
T 16:00 16:15 16:30 16:45	Time 16:15 16:30 16:45 17:00	Dunbrack Street Northbound Approach B 185 212 187 219 179	Highway 1 Westbound 53 62 66 47	02 Ramps d Approach F 100 79 108 108	Southboun H 225 240 255 195	d Approach I 88 80 94 76	Eas	tbound Appro	bach L	Total Vehicles 651 673 710 645			
T 16:00 16:15 16:30 16:45 17:00 17:15	Time 16:15 16:30 16:45 17:00 17:15 17:30	Dunbrack Street Northbound Approach B 185 212 187 219 178 195	Highway 1 Westbound 53 62 66 47 67 40	02 Ramps d Approach F 100 79 108 108 99 107	Southboun H 225 240 255 195 234 213	d Approach I 88 80 94 76 66 68	Eas J	tbound Appro	L L	Total Vehicles 651 673 710 645 644 623			
T 16:00 16:15 16:30 16:45 17:00 17:15 17:20	Time 16:15 16:30 16:45 17:00 17:15 17:30 17:45	Dunbrack Street Northbound Approach B 185 212 187 219 178 195 176	Highway 1 Westbound 53 62 66 47 67 40 47	02 Ramps d Approach F 100 79 108 108 99 107 100	Southboun H 225 240 255 195 234 213 177	d Approach I 88 80 94 76 66 68 54	Eas J	tbound Appro	L	Total Vehicles 651 673 710 645 644 623 554			
T 16:00 16:15 16:30 16:45 17:00 17:15 17:30 17:45	Time 16:15 16:30 16:45 17:00 17:15 17:15 17:30 17:45 18:00	Dunbrack Street Northbound Approach B 185 212 187 219 178 195 176 179	Highway 1 Westbound 53 62 66 47 67 40 47 32	02 Ramps d Approach F 100 79 108 108 99 107 100 120	Southboun H 225 240 255 195 234 213 177 159	d Approach I 88 80 94 76 66 68 54 42	Eas J	tbound Appro	Dach L	Total Vehicles 651 673 710 645 644 623 554 554 532			
T 16:00 16:15 16:30 16:45 17:00 17:15 17:30 17:45 PM Pe	Time 16:15 16:30 16:45 17:00 17:15 17:15 17:45 18:00 Pack Hour	Dunbrack Street Northbound Approach B 185 212 187 219 178 195 176 179 803	Highway 1 Westbound 53 62 66 47 67 40 47 32 228	02 Ramps d Approach F 100 79 108 108 99 107 100 120 395	Southboun H 225 240 255 195 234 213 177 159 915	d Approach I 88 80 94 76 66 68 54 42 338	Eas	tbound Appro	oach L 0	Total Vehicles 651 673 710 645 644 623 554 532 2679			
T 16:00 16:15 16:30 16:45 17:00 17:15 17:30 17:45 PM Pe 16:00	Time 16:15 16:30 16:45 17:00 17:15 17:30 17:45 18:00 Seak Hour 17:00	Dunbrack Street Northbound Approach B 185 212 187 219 178 195 176 176 179 803 803	Highway 1 Westbound 53 62 66 47 67 40 47 32 228 228	02 Ramps d Approach F 100 79 108 108 99 107 100 120 395 395	Southboun H 225 240 255 195 234 213 177 159 915 915	d Approach I 88 80 94 76 66 68 54 42 338 338	Eas: J 0	tbound Appro K	oach L 0 0	Total Vehicles 651 673 710 645 644 623 554 532 2679 2679			
T 16:00 16:15 16:30 16:45 17:00 17:15 17:30 17:45 PM Pe 16:00 17:00	Time 16:15 16:30 16:45 17:00 17:15 17:30 17:45 18:00 28ak Hour 17:00 18:00	Dunbrack Street Northbound Approach B 185 212 187 219 178 195 176 179 803 803 803 728	Highway 1 Westbound 53 62 66 47 67 40 47 32 228 228 228 186	02 Ramps d Approach F 100 79 108 108 99 107 100 120 395 395 426	Southboun H 225 240 255 195 234 213 177 159 915 915 783	d Approach I 88 80 94 76 66 68 54 42 338 338 230	Eas: J 0 0 0	tbound Appro K	oach L 0 0 0	Total Vehicles 651 673 710 645 644 623 554 532 2679 2679 2353			

					Dunbrack Street										
				ін											
Table A-8															
								↓ ↓		Hwy 102 SB	Onramp				
	Dunbrack Street														
@				J —											
Highway 102 SB Ramps (From Bedford)					к ——										
					HW	y 102 SB Rar	nps	1							
									••						
		Halifay NG	2					E	ВС						
	Tu	esday. November 1	9 19. 2024					Dumbers als Of							
		,				Dunbrack Street									
					AM Pea	ak Period Vo	lume Data								
		Dunbrad	ck Street	Hwy	y 102 SB Onr	amp	Dunbra	ck Street	Hw	y 102 SB Rai	mps				
Т	Time	Northboun	d Approach	Wes	stbound Appr	oach	Southboun	d Approach	Eas	tbound Appro	oach	l otal Vehicles			
		В	С				Н	I	J	К	L	Venicies			
07:00	07:15	152	124				54	25	86	21	124	586			
07:15	07:30	195	134				63	10	86	16	219	723			
07:30	07:45	208	136				79	6	75	11	194	709			
07:45	08:00	246	96				98	8	82	6	173	709			
08:00	08:15	234	109				98	7	101	6	153	708			
08:15	08:30	230	72				123	6	67	3	143	644			
08:30	08:45	208	69				114	2	67	3	113	5/6			
08:45	09:00	240	48			-	109	3	53	0	89	542			
	eak Hour	883	475	0	0	U	338	31	344	39	739	2849			
07:00	00:00	801	490	0	0	0	294	49	329	54	/10	2/2/			
08.00	09.00	912	290	U	U	U	444	10	200	12	490	2470			
					Midday P	eak Period V	/olume Data								
		Dunbrad	ck Street	Hwy	/ 102 SB Onr	amp	Dunbra	ck Street	Hw	v 102 SB Rai	mps				
Time		Northbound Approach Wes			stbound Appr	oach	Southboun	d Approach	Eas	Eastbound Approach					
		В	С				н	1	J	к	L	Vehicles			
11:30	11:45	170	18				153	2	25	0	71	439			
11:45	12:00	146	42				135	2	45	0	70	440			
12:00	12:15	186	26				128	2	38	1	76	457			
12:15	12:30	168	23				156	2	32	1	74	456			
12:30	12:45	156	41				143	2	37	0	73	452			
12:45	13:00	178	27				128	1	41	1	85	461			
13:00	13:15	186	18				132	0	22	0	60	418			
13:15	13:30	155	28				129	3	39	0	70	424			
Midday	Peak Hour	688	117	0	0	0	555	7	148	3	308	1826			
11:30	12:30	670	109	0	0	0	572	8	140	2	291	1792			
12:30	13:30	675	114	U	U	U	532	0	139	1	200	1/00			
					PM Pea	ak Period Vo	lume Data								
		Dunbrad	ck Street	Hwy	/ 102 SB Onr	102 SB Onramp Dunbrack Street Hwy 102 SB Ramps					mps				
Time Northbound Approach		Wes	stbound Appr	oach	Southbound Approach		Eastbound Approach			Total					
			B C				H I		J K L			- Vehicles			
16:00	16:15	276	23				205	0	51	0	151	706			
16:15	16:30	255	32				253	0	63	0	165	768			
16:30	16:45	232	27				257	0	66	0	150	732			
16:45	17:00	251	20				190	0	72	1	204	738			
17:00	17:15	214	22				252	30	38	1	161	718			
17:15	17:30	217	21				206	39	53	0	155	691			
17:30	17:45	206	14				178	30	46	0	147	621			
17:45	18:00	191	14				149	29	41	0	118	542			
PM Pe	eak Hour	952	101	0	0	0	952	30	239	2	680	2956			
16:00	17:00	1014	102	0	0	0	905	0	252	1	670	2944			
17.00	18:00	828	71	0	0	0	785	128	178	1	581	2572			

APPENDIX B WARRANT ANALYSIS

-

2005 Canadian Traffic Signal Warrant Matrix Analysis

Table: B-1 - Washmill Lake Drive @ Regency Park Drive 2039 Future with Site Generated Trips

-

Main Street (name)	Wash	mill Lake	Direction (EW or NS)				EW		Date:	Fel	oruary 2	025	
Side Street (name)	Rege	ncy Park	Drive	Dire	ection (EV	W or NS)	NS		City:	I	Halifax, N	IS	
Lane Configuration		Excl LT	Th & LT	Through or Th+RT+LT	Th & RT	Excl RT	JpStream signal (m)	# of Thru Lanes					
Washmill Lake Drive	WB	щ	1		1	щ	8						
Washmill Lake Drive	EB		1		1								
Site Access #3	NB			1									
Regency Fark Drive	30			1									
Other input		Speed	Trucks	Bus Rt	Median								
Washmill Lake Drive	EW	(Km/h) 50	2.0%	(y/n) v	(m) 0.0								
Regency Park Drive	NS	50	2.0%	y	0.0								
-					1	•	-				1	1	
	Ped1 NS	Ped2	Ped3	Ped4	-		Demogra	phics		(1)			
	INS W Side	INS E Side	E W N Side	E W S side	-		Elementar	y School		(y/n)	y n		
7:00 - 8:00	5	5	5	5			Pathway to	o School		(y/n) (y/n)	у		
8:00 - 9:00	5	5	5	5			Metro Are	a Populatio	n	(#)	500,000		
11:30 - 12:30	5	5	5	5			Central Bu	isiness Dist	rict	(y/n)	у	J	
12:30 - 13:30	5	5	5	5	-								
17:00 - 18:00	5	5	5	5									
Total (6-hour peak)	30	30	30	30									
Average (o-nour peak)	3	3	5	3	1								
													•
Traffic Input		NB	r		SB			WB			EB	1	
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	
7:00 - 8:00	10	35	30	185	15	90	10	480	55	105	320	5	
8:00 - 9:00	15	40	35	220	15	105	15	560	65	125	375	5	-
11:30 - 12:30	5	20	15	140	15	80	15	470	65	120	435	5	
12:30 - 13:30	5	20	15	140	15	80	15	470	65	120	435	5	
16:00 - 17:00	5	20	20	240	35	135	35	795	145	245	865	10	
1/:00 - 18:00	5	20	13	200	30	115	30	0/5	520	205	/35	10	
Average (6-hour peak)	45	26	22	1,125	21	101	20	575	520 87	920	528	40	
Average 6-hoo Mov	ur Pea ement	k Turr s	ning		SB	1	Regency Par Drive	North>					
					309			NB					
			Pedl	RT	ΗT	LT		266					
			5	01	1	88		1		1			
				=	7	=					1		
										87	RT		
		(0.0	1. →				/						
<	WB	683								575	IH	682	WB
Washmill Lake Drive			_		\rightarrow		\times			20	LT		
				1		\times	\rightarrow						
		LT	153			\rightarrow	$\langle \cdot \rangle$	\searrow				Washmill	Lake Drive
ED	(00		520				\backslash						
EB	688	IH	528			/			/		737	EB	>
		RT	7										
					\langle / \rangle	1				+	1		
			ļ		¥		~	26	22	S			
			•		~	1	ы	π	ц	12	1		
					4	l	Ц	F	¥	Pe			
					SB			55					
				C:4	• 1000	#3		~	I				
				50	e Access	,#3		Z					
					_					_			
				W = [C _{bt} (X _v	<u>-v) / K</u> 1	+ (F (<u>X_{v-p})</u> L	.) / K ₂]	x C _i	_		
						W =	2	77	259	18			
									Veh	Ped			

Warranted

_

2005 Canadian Traffic Signal Warrant Matrix Analysis Table: B-2 - Washmill Lake Drive @ Regency Park Drive 20

039	Future	Background	with	Trips	Diverted
-----	--------	------------	------	-------	----------

_

-

Main Street (name)	Wash	mill Lake	Drive	Dire	ection (EV	W or NS)	EW		Date:	Feb	oruary 2	025	
Side Street (name)	Rege	ncy Park	Drive	Dire	ection (EV	W or NS)	NS		City:	I	Ialifax, N	s	
Lane Configuration		el LT	l & LT	rough or +RT+LT	l & RT	cl RT	Stream gnal (m)	[#] of Thru Lanes					1
Washmill Lake Drive	WB	Ex	É	官臣	Ē	Ex	ŝis	71-					
Washmill Lake Drive	EB		1	1									
	NB												
Regency Park Drive	SB			1			J						
Other input		Speed (Km/h)	Trucks	Bus Rt (v/n)	Median (m)								
Washmill Lake Drive	EW	50	2.0%	y	0.0								
Regency Park Drive	NS	50	2.0%	у		l							
	Ped1	Ped2	Ped3	Ped4]		Demograp	ohics]	
	NS	NS	EW	EW			Elementar	y School		(y/n)	у		
7,00 8,00	W Side	E Side	N Side	S side			Senior's C	omplex		(y/n)	n		
8:00 - 9:00							Metro Are	a Populatio	n	(#)	500,000		
11:30 - 12:30							Central Bu	isiness Dist	rict	(y/n)	у		
15:30 - 16:30													
16:30 - 17:30													
Total (6-hour peak)	0	0	0	0									
Average (0-nour peak)	U	U	U	U	1								
	r	ND		r	GD		r	11/10			ED		1
Traffic Input	1.7	NB	DT		SB	DT	1.7	WB	DT		EB	DT	-
7:00 8:00		1 n	KI	20	1 n	KI		1n 425	15	70 70	1 n 220	KI	-
8:00 - 9:00	0	0	0	20	0	70	0	510	15	80	320	0	-
11:30 - 12:30	0	0	0	15	0	50	0	365	15	65	370	0	
12:30 - 13:30	0	0	0	15	0	50	0	365	15	65	370	0	
15:30 - 16:30	0	0	0	20	0	105	0	700	25	140	865	0	
16:30 - 17:30	0	0	0	15	0	90	0	595	20	120	735	0	
Total (6-hour peak)	0	0	0	105	0	425	0	2,970	105	540	3,035	0	
Average (6-hour peak)	0	0	0	18	0	71	0	495	18	90	506	0	
Average 6-hou Mov « Washmill Lake Drive EB	ur Peal ements WB	k Turr s 566 LT TH RT	Ipad Defendence Defend	71 RT	SB 0 TH 88 SB	18 LT	LT 0 Regency Par	0 TH 0	RT 0	18 495 0	RT TH LT 523	513 Washmill EB] WB Lake Drive >
				W = [o C _{bt} (X _v	$(v) / K_1$ W = NOT	<u>+ (F (</u> 4 Warra	Ż X _{v-p}) L 5 unted	.) / K ₂] 45 Veh	x C _i 0 Ped			

Table: B-3 - Regency Park Drive @ Internal Intersection (EW) 2039 Future with Site Generated Trips

Main Street (name)	Rege	ncy Park	Drive	Dire	ection (EV	W or NS)	NS		Date:	Feb	oruary 2	025	
Side Street (name)	In	ternal Ro	oad	Dire	ection (EV	W or NS)	EW		City:	I	lalifax, N	IS	
Lane Configuration		LT	٤LT	ugh or RT+LT	έ RT	RT	tream al (m)	of Thru Lanes					1
		Excl	Th 8	Thro Th+I	Th 8	Excl	UpS Sign	# c I					
Regency Park Drive	NB	1			1								
Internal Road	SB WB	1		1	1								
Internal Road	EB			1									
Other input		Speed (Km/h)	Trucks	Bus Rt (v/n)	Median (m)]							
Regency Park Drive	NS	50	2.0%	у	0.0								
Internal Road	EW	50	2.0%	у		l							
	Ped1	Ped2	Ped3	Ped4	ן		Demogra	ohics				1	
	NS	NS	EW	EW			Elementar	y School		(y/n)	у		
	W Side	E Side	N Side	S side			Senior's C	omplex		(y/n)	n		
7:00 - 8:00	10	10	10	10			Pathway to Metro Are	o School	.n.	(y/n)	y 500.000	-	
11:30 - 12:30	10	10	10	10			Central Bu	isiness Dist	rict	(y/n)	y		
12:30 - 13:30	10	10	10	10								-	
15:30 - 16:30	10	10	10	10									
Total (6-hour peak)	60	60	60	60									
Average (6-hour peak)	10	10	10	10									
Traffic Input		NB			SB			WB			EB		1
Trance input	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	
7:00 - 8:00	25	130	35	55	150	40	80	0	80	55	0	55	
8:00 - 9:00	30	150	40	65	175	50	95	0	95	65	0	65	
11:30 - 12:30	25	120	40	65	115	45	65	0	65	45	0	45	
12:30 - 13:30	25	120	40	65	115	45	65	0	65	45	0	45	1
15:30 - 16:30	65	250	90	150	205	110	120	0	120	90	0	90	
16:30 - 17:30	55	215	75	130	175	90	100	0	105	75	0	75	
Total (6-hour peak)	225	985	320	530	935	380	525	0	530	375	0	375	
Average (6-hour peak)	38	164	53	88	156	63	88	0	88	63	0	63	
Average 6-hou Move	ır Peal ements	k Turı S	Ded3	RT	TH 176 WB	LT	Internal Road	142 EB >]				
			0	8	0	8		1		1			
			-	, w		~					1		
										53	RT		
<north< td=""><td>ND</td><td>215</td><td></td><td></td><td></td><td></td><td>/</td><td></td><td></td><td>164</td><td>тц</td><td>255</td><td>ND</td></north<>	ND	215					/			164	тц	255	ND
SNOTU	NB	315		/						104	тп	255	IND
Regency Park Drive						<	$\boldsymbol{\times}$			38	LT		
				1	_	\prec	\rightarrow						
		LT	88			\rightarrow		\rightarrow				Regency	Park Drive
SB	308	TH	156			-	\rightarrow			\rightarrow	306	SB	>
		RT	63									-	
			L	Int	Eernal R	oad	LT <mark>63</mark>	EB 125 TH 0	RT 63	Ped4 10			
				W = [C _{bt} (X _v	_v) / K ₁	+ (F (X _{v-p}) I	.) / K ₂]	x C _i			

W =

79

NOT Warranted

64

Veh

15

Ped

Table: B-4 - Dunbrack Street @ 102 NB Ramps

2039 Future with Background Development

Main Street (name)	Du	nbrack St	reet	Dire	ection (EV	V or NS)	NS		Date	Feb	ruary 2	025
Main Street (name)	Du	ibi ack 5t	ittet	Dire	cuon (E	or or 115)	115		Date.	Per	nuary 2	023
Side Street (name)	Hig	hway 102	NB	Dire	ection (EV	V or NS)	EW		City:	F	Ialifax, N	S
Lane Configuration		Excl LT	Th & LT	Through or Th+RT+LT	Th & RT	Excl RT	UpStream Signal (m)	# of Thru Lanes				
Dunbrack Street	NB			2		1		2				
Dunbrack Street	SB			2		1		2				
Highway 102 NB	WB	1				1						
Highway 102 NB	EB											
Other input	NC	Speed (Km/h)	Trucks	Bus Rt (y/n)	Median (m)							
Highway 102 NP	NS EW	60	2.0%	y .	6.0							
riigiiway 102 NB	Ew	00	2.076	п								
	Ped1	Ped2	Ped3	Ped4	1		Demogram	ohics				
	NS	NS	EW	EW			Elementar	School		(v/n)	v	
	W Side	E Side	N Side	S side			Senior's Co	omplex		(y/n)	n	
7:00 - 8:00							Pathway to	o School		(v/n)	n	
8:00 - 9:00							Metro Are	a Populatio	n	(#)	400,000	
11:30 - 12:30							Central Bu	siness Dist	rict	(y/n)	n	
12:30 - 13:30												
15:30 - 16:30												
16:30 - 17:30												
Total (6-hour peak)	0	0	0	0								
Average (6-hour peak)	0	0	0	0								
Traffic Input		NB			SB			WB			EB	
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT
7:00 - 8:00	0	925	0	0	635	280	110	0	175	0	0	0
8:00 - 9:00	0	785	0	0	540	240	95	0	150	0	0	0
11:30 - 12:30	0	450	0	0	410	165	90	0	150	0	0	0
12:30 - 13:30	0	450	0	0	410	165	90	0	150	0	0	0
15:30 - 16:30	0	735	0	0	850	320	210	0	360	0	0	0
16:30 - 17:30	0	865	0	0	1000	375	245	0	425	0	0	0
Total (6-hour peak)	0	4,210	0	0	3,845	1,545	840	0	1.410	0	0	0
Average (6-hour peak)	0	702	0	0	641	258	140	0	235	0	0	0

Table: B-5 - Dunbrack Street @ 102 NB Ramps

2039 Future with Site Trips

				n				1				
Main Street (name)	Du	nbrack St	reet	Dire	ction (EV	W or NS)	NS		Date:	Ja	nuary 2(025
Side Street (name)	Hig	hway 102	2 NB	Dire	ction (EV	W or NS)	EW		City:	ł	Ialifax, N	s
Lane Configuration		Excl LT	Th & LT	Through or Th+RT+LT	Th & RT	Excl RT	UpStream Signal (m)	# of Thru Lanes				
Dunbrack Street	NB			2		1		2				
Dunbrack Street	SB			2		1		2				
Highway 102 NB	WB	1				1						
Highway 102 NB	EB											
Other input		Speed (Km/h)	Trucks	Bus Rt (y/n)	Median (m)							
Dunbrack Street	NS	60	2.0%	у	6.0							
Highway 102 NB	EW	60	2.0%	n								
	Ped1	Ped2	Ped3	Ped4	1		Demograr	phies				
	NS	NS	EW	EW			Elementary	v School		(v/n)	v	
	W Side	E Side	N Side	S side			Senior's C	omplex		(y/n)	n	
7:00 - 8:00							Pathway to	o School		(y/n)	n	
8:00 - 9:00							Metro Are	a Populatic	m	(#)	400,000	
11:30 - 12:30							Central Bu	isiness Dist	rict	(y/n)	n	
12:30 - 13:30												
15:30 - 16:30												
16:30 - 17:30												
Total (6-hour peak)	0	0	0	0								
Average (6-hour peak)	0	0	0	0								
Fraffic Input		NB			SB			WB			EB	
-	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT
7:00 - 8:00	0	1005	400	0	755	360	110	0	225	0	0	0
8:00 - 9:00	0	850	340	0	635	300	95	0	190	0	0	0
11:30 - 12:30	0	505	205	0	470	205	90	0	190	0	0	0
									1		1	

	LT	Th	RI	LT	Th	RI	LT	Th	RI	LT	Th	RT
7:00 - 8:00	0	1005	400	0	755	360	110	0	225	0	0	0
8:00 - 9:00	0	850	340	0	635	300	95	0	190	0	0	0
11:30 - 12:30	0	505	205	0	470	205	90	0	190	0	0	0
12:30 - 13:30	0	505	205	0	470	205	90	0	190	0	0	0
15:30 - 16:30	0	870	355	0	955	390	210	0	450	0	0	0
16:30 - 17:30	0	1020	420	0	1125	460	245	0	530	0	0	0
Total (6-hour peak)	0	4,755	1,925	0	4,410	1,920	840	0	1,775	0	0	0
Average (6-hour peak)	0	793	321	0	735	320	140	0	296	0	0	0

Table: B-6 - Dunbrack Street @ 102 SB Ramps

2039 Future with Background Development

Main Street (name)	Du	ıbrack St	reet	Dire	ection (EV	V or NS)	NS		Date:	Fel	bruary 2	025
Side Street (name)	Hig	hway 102	2 SB	Dire	ection (EV	V or NS)	EW		City:	1	Halifax, N	s
Lane Configuration		Excl LT	ľh & LT	Through or Th+RT+LT	Th & RT	Excl RT	JpStream Signal (m)	# of Thru Lanes				
Dunbrack Street	NB			2		1		2				
Dunbrack Street	SB			2		1		2				
Highway 102 SB	WB									4		
Highway 102 SB	EB	1				1						
Other input	NS	Speed (Km/h)	Trucks	Bus Rt (y/n)	Median (m)							
Highway 102 SB	EW	60	2.0%	n	0.0							
	Ped1	Ped?	Ped3	Ped4	1		Demograr	hics		r	r –	I
	NS	NS	FW	FW			Elemente	. C -11		(11/12)		
-	WSide	E Side	L W N Sido	E W			Elementary	School		(y/n) (y/n)	y	
7:00 - 8:00	W Slue	E Slue	Noiue	5 side			Pathway to	School		(y/n)	n	
8:00 - 9:00							Metro Are	a Populatio	n	(#)	400.000	
11:30 - 12:30							Central Bu	siness Dist	rict	(v/n)	n	
12:30 - 13:30												
15:30 - 16:30												
16:30 - 17:30												
Total (6-hour peak)	0	0	0	0								
Average (6-hour peak)	0	0	0	0								
Traffic Input		NB			SB			WB			EB	
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT
7:00 - 8:00	0	955	515	0	365	45	0	0	0	370	40	800
8:00 - 9:00	0	810	440	0	310	40	0	0	0	315	35	680
11:30 - 12:30	0	495	155	0	350	20	0	0	0	160	10	385
12:30 - 13:30	0	495	155	0	350	20	0	0	0	160	10	385
15:30 - 16:30	0	875	95	0	875	35	0	0	0	220	0	625
16:30 - 17:30	0	1030	110	0	1030	40	0	0	0	260	0	735
10000 17000	0	4,660	1.470	0	3.280	200	0	0	0	1,485	95	3.610
Total (6-hour neak)												

Table: B-7 - Dunbrack Street @ 102 SB Ramps

2039 Future with Background Development

Main Street (name)	Dui	nbrack St	reet	Dire	ection (EV	V or NS)	NS		Date:	Feb	oruary 2	025
Side Street (name)	Hig	hway 102	SB	Dire	ection (EV	V or NS)	EW		City:	H	Ialifax, N	s
Lane Configuration		Excl LT	Th & LT	Through or Th+RT+LT	Th & RT	Excl RT	UpStream Signal (m)	# of Thru Lanes				
Dunbrack Street	NB			2		1		2				
Dunbrack Street	SB			2		1		2				
Highway 102 SB	WB											
Highway 102 SB	EB	1				1						
Other input		Speed (Km/h)	Trucks %	Bus Rt (y/n)	Median (m)							
Dunbrack Street	NS	60	2.0%	у	6.0							
Highway 102 SB	EW	60	2.0%	n								
					1	1					-	
	Ped1	Ped2	Ped3	Ped4			Demograp	ohics				
	NS	NS	EW	EW			Elementary	y School		(y/n)	у	
	W Side	E Side	N Side	S side			Senior's Co	omplex		(y/n)	n	
7:00 - 8:00							Pathway to	o School		(y/n)	n	
8:00 - 9:00							Metro Are	a Populatio	n 	(#)	400,000	
11:30 - 12:30							Central Bu	isiness Dist	rict	(y/n)	n	
15:30 - 16:30												
16:30 - 17:30												
Total (6-hour peak)	0	0	0	0								
Average (6-hour peak)			0	0								
	0	0	•	U								
	0	0	Ū	U								
Traffic Input	0	0 NB		U	SB			WB			EB	
Fraffic Input	0 LT	0 NB Th	RT	LT	SB Th	RT	LT	WB Th	RT	LT	EB Th	RT
Traffic Input 7:00 - 8:00	0 	0 NB Th 970	RT 515	LT 0	SB Th 385	RT 90	LT 0	WB Th 0	RT 0	LT 400	EB Th 40	RT 800
7:00 - 8:00 8:00 - 9:00	0 LT 0	0 NB Th 970 825	RT 515 440	U LT 0 0	SB Th 385 330	RT 90 75	LT 0 0	WB Th 0	RT 0	LT 400 340	EB Th 40 35	RT 800 680
7:00 - 8:00 8:00 - 9:00 11:30 - 12:30	0 LT 0 0	0 NB Th 970 825 505	RT 515 440 155	U LT 0 0	SB Th 385 330 360	RT 90 75 45	LT 0 0	WB Th 0 0	RT 0 0	LT 400 340 180	EB Th 40 35 10	RT 800 680 385
7:00 - 8:00 8:00 - 9:00 11:30 - 12:30 12:30 - 13:30	0 LT 0 0 0	0 NB Th 970 825 505 505	RT 515 440 155 155	U LT 0 0 0 0	SB Th 385 330 360 360	RT 90 75 45 45	LT 0 0 0 0	WB Th 0 0 0 0	RT 0 0 0	LT 400 340 180	EB Th 40 35 10 10	RT 800 680 385 385
7:00 - 8:00 8:00 - 9:00 11:30 - 12:30 12:30 - 13:30 15:30 - 16:30	0 LT 0 0 0 0 0	0 NB Th 970 825 505 505 900	RT 515 440 155 155 95	0 LT 0 0 0 0	SB Th 385 330 360 360 895	RT 90 75 45 45 45 75	LT 0 0 0 0	WB Th 0 0 0 0 0	RT 0 0 0 0	LT 400 340 180 180 270	EB Th 40 35 10 10 0	RT 800 680 385 385 625
Traffic Input 7:00 - 8:00 8:00 - 9:00 11:30 - 12:30 12:30 - 13:30 15:30 - 16:30 16:30 - 17:30	0 LT 0 0 0 0 0 0 0	0 NB Th 970 825 505 505 900 1055	RT 515 440 155 155 95	0 LT 0 0 0 0 0	SB Th 385 330 360 360 895	RT 90 75 45 45 45 75 85	LT 0 0 0 0 0	WB Th 0 0 0 0 0 0	RT 0 0 0 0 0 0	LT 400 340 180 180 270 315	EB Th 40 35 10 10 0	RT 800 680 385 385 625 735
7:00 - 8:00 8:00 - 9:00 11:30 - 12:30 12:30 - 13:30 15:30 - 16:30 16:30 - 16:30 Total (c. hour, neal)	0 LT 0 0 0 0 0 0 0	0 NB Th 970 825 505 505 900 1055 4 760	RT 515 440 155 155 95 110 1470	U LT 0 0 0 0 0 0 0	SB Th 385 330 360 360 895 1055 3 385	RT 90 75 45 45 45 75 85 85	LT 0 0 0 0 0 0 0	WB Th 0 0 0 0 0 0 0	RT 0 0 0 0 0 0 0 0 0 0 0	LT 400 340 180 270 315 1685	EB Th 40 35 10 10 0 0 95	RT 800 680 385 385 625 735 3610
Traffic Input 7:00 - 8:00 8:00 - 9:00 11:30 - 12:30 12:30 - 13:30 15:30 - 16:30 16:30 - 17:30 Total (6-hour peak) Avergase (6-hour peak)	0 LT 0 0 0 0 0 0 0 0 0 0 0	0 NB Th 970 825 505 505 900 1055 4,760 793	RT 515 440 155 155 95 110 1,470 245	U LT 0 0 0 0 0 0 0 0 0 0 0	SB Th 385 330 360 360 895 1055 3,385 564	RT 90 75 45 45 75 85 415 69	LT 0 0 0 0 0 0 0 0 0 0	WB Th 0 0 0 0 0 0 0 0 0 0	RT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LT 400 340 180 270 315 1,685 281	EB Th 40 35 10 10 0 0 95	RT 800 680 385 385 625 735 3,610 602

	NCHRP 684 Internal Trip Capture Estimation Tool											
Project Name:	Regency Links		Organization:	WSP								
Project Location:	Regency Park Drive		Performed By:	Brianna Rietzel								
Scenario Description:	AM Peak Hour		Date:	2025-02-20								
Analysis Year:	2039		Checked By:	Patrick Hatton								
Analysis Period:	AM Street Peak Hour		Date:									

	Table 1	-A: Base Vehicle	e-Trip Generation	Estimates (Single-Use	e Site Estimate)	
Land Line	Developme	ent Data (<i>For Info</i>	ormation Only)		Estimated Vehicle-Trips ³	
Land Use	ITE LUCs ¹	Quantity	Units	Total	Entering	Exiting
Office				0		
Retail				368	221	147
Restaurant				0		
Cinema/Entertainment				0		
Residential				917	238	679
Hotel				0		
All Other Land Uses ²				0		
				1,285	459	826

		Table 2-A:	Mode Split and Veh	icl	e Occupancy Estimates	6	
		Entering Tri	ps			Exiting Trips	
Land Ose	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ.4	% Transit	% Non-Motorized
Office							
Retail	1.17				1.16		
Restaurant							
Cinema/Entertainment							
Residential	1.13				1.09		
Hotel							
All Other Land Uses ²							

	Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)											
Origin (From)		Destination (To)										
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel						
Office												
Retail												
Restaurant												
Cinema/Entertainment												
Residential												
Hotel												

	Table 4-A: Internal Person-Trip Origin-Destination Matrix*											
Origin (From)	Destination (To)											
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel						
Office		0	0	0	0	0						
Retail	0	0 0		0	5	0						
Restaurant	0	0		0	0	0						
Cinema/Entertainment	0	0	D 0		0	0						
Residential	0	7	0	0		0						
Hotel	0	0	0	0	0							

Table 5-A	: Computatio	ons Summary		Table 6-A: Internal Trip Capture Percentages by Land Use					
	Total	Entering Exiting		Land Use	Entering Trips	Exiting Trips			
All Person-Trips	1,439	528	911	Office	N/A	N/A			
Internal Capture Percentage	2%	2%	1%	Retail	3%	3%			
				Restaurant	N/A	N/A			
External Vehicle-Trips ⁵	1,264	449	815	Cinema/Entertainment	N/A	N/A			
External Transit-Trips ⁶	0	0	0	Residential	2%	1%			
External Non-Motorized Trips ⁶	0	0	0	Hotel	N/A	N/A			

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.

⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

NCHRP 684 Internal Trip Capture Estimation Tool											
Project Name:	Regency Links		Organization:	WSP							
Project Location:	Regency Park Drive		Performed By:	Brianna Rietzel							
Scenario Description:	PM Peak Hour		Date:	2025-02-20							
Analysis Year:	2039		Checked By:	Patrick Hatton							
Analysis Period:	PM Street Peak Hour		Date:								

	Table 1-P: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)											
Land Lies	Developm	ent Data (For Int	formation Only)		Estimated Vehicle-Trips ³							
Lanu Ose	ITE LUCs ¹	Quantity	Units		Total	Entering	Exiting					
Office					0							
Retail					1,026	513	513					
Restaurant					0							
Cinema/Entertainment					0							
Residential					1,088	675	413					
Hotel					0							
All Other Land Uses ²					0							
					2,114	1,188	926					

	Table 2-P: Mode Split and Vehicle Occupancy Estimates										
Land Use		Entering Tri	ps			Exiting Trips					
	Veh. Occ.4	% Transit	% Non-Motorized	Ī	Veh. Occ.4	% Transit	% Non-Motorized				
Office											
Retail	1.21				1.18						
Restaurant											
Cinema/Entertainment											
Residential	1.15				1.21						
Hotel											
All Other Land Uses ²											

	Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)											
Origin (From)		Destination (To)										
	Office	Retail	Restaurant	Residential	Hotel							
Office												
Retail					1000							
Restaurant												
Cinema/Entertainment												
Residential		1000										
Hotel												

	Table 4-P: Internal Person-Trip Origin-Destination Matrix*												
Origin (From)	Destination (To)												
Oligin (Florit)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel							
Office		0	0 0		0	0							
Retail	0		0	0	146	0							
Restaurant	0	0		0	0	0							
Cinema/Entertainment	0	0	0		0	0							
Residential	0	47	0	0		0							
Hotel	0	0	0	0	0								

Table 5-P	: Computatio	ns Summary		Table 6-P: Internal Trip Capture Percentages by Land Use					
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips			
All Person-Trips	2,502	1,397	1,105	Office	N/A	N/A			
Internal Capture Percentage	15%	14%	17%	Retail	8%	24%			
				Restaurant	N/A	N/A			
External Vehicle-Trips ⁵	1,785	1,022	763	Cinema/Entertainment	N/A	N/A			
External Transit-Trips ⁶	0	0	0	Residential	19%	9%			
External Non-Motorized Trips ⁶	0	0	0	Hotel	N/A	N/A			

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made ⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

APPENDIX

INTERSECTION PERFORMANCE ANALYSIS

Appendix C - Intersection Performance Analysis 1: Regency Park Drive/Parkland Drive & Lacewood Drive

	٦	-	$\mathbf{\hat{z}}$	4	-	*	1	1	۲	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲.	† †	1	1	^	1	٦	•	1	٦	•	1
Traffic Volume (vph)	95	470	135	90	320	100	120	50	135	175	65	155
Future Volume (vph)	95	470	135	90	320	100	120	50	135	175	65	155
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.543			0.454			0.711			0.722		
Satd. Flow (perm)	1011	3539	1583	846	3539	1583	1324	1863	1583	1345	1863	1583
Satd. Flow (RTOR)			88			88			147			168
Lane Group Flow (vph)	103	511	147	98	348	109	130	54	147	190	71	168
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases	6		6	2		2	4		4	8		8
Total Split (s)	12.0	35.0	35.0	13.0	36.0	36.0	42.0	42.0	42.0	42.0	42.0	42.0
Total Lost Time (s)	4.0	6.3	6.3	4.0	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3
Act Effct Green (s)	22.5	14.5	14.5	23.0	14.8	14.8	12.9	12.9	12.9	12.9	12.9	12.9
Actuated g/C Ratio	0.45	0.29	0.29	0.46	0.30	0.30	0.26	0.26	0.26	0.26	0.26	0.26
v/c Ratio	0.18	0.49	0.28	0.18	0.33	0.20	0.38	0.11	0.28	0.54	0.15	0.31
Control Delay	7.8	18.3	9.7	7.7	16.4	7.1	19.9	15.8	5.2	23.5	16.1	5.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	7.8	18.3	9.7	7.7	16.4	7.1	19.9	15.8	5.2	23.5	16.1	5.1
LOS	А	В	Α	А	В	Α	В	В	А	С	В	Α
Approach Delay		15.2			13.0			12.7			15.1	
Approach LOS		В			В			В			В	
Queue Length 50th (m)	4.1	21.2	4.1	3.9	13.6	1.4	9.7	3.7	0.0	14.9	5.0	0.0
Queue Length 95th (m)	13.0	42.0	18.1	12.5	28.1	11.9	25.4	12.0	11.0	36.3	14.7	11.6
Internal Link Dist (m)		122.8			242.6			314.2			320.2	
Turn Bay Length (m)	55.0		7.0	50.0		7.0	35.0		7.0	35.0		7.0
Base Capacity (vph)	597	2172	1005	586	2247	1037	977	1375	1207	993	1375	1212
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.17	0.24	0.15	0.17	0.15	0.11	0.13	0.04	0.12	0.19	0.05	0.14

Intersection Summary

Cycle Length: 90 Actuated Cycle Length: 49.6 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.54 Intersection Signal Delay: 14.2 Intersection Capacity Utilization 49.0% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service A

Splits and Phases: 1: Regency Park Drive/Parkland Drive & Lacewood Drive

▶ Ø1	₹ Ø2	1 04	
12 s	36 s	42 s	
√ Ø5	406	↓ Ø8	
13 s	35 s	42 s	

	≯	-	\mathbf{r}	4	-	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^			^	1	ľ	ŧ	1			
Traffic Volume (vph)	190	545	0	0	580	235	120	Ō	390	0	0	0
Future Volume (vph)	190	545	0	0	580	235	120	0	390	0	0	0
Satd. Flow (prot)	3433	3539	0	0	5085	1583	1681	1681	1583	0	0	0
Flt Permitted	0.950						0.950	0.950				
Satd. Flow (perm)	3433	3539	0	0	5085	1583	1681	1681	1583	0	0	0
Satd. Flow (RTOR)						255			202			
Lane Group Flow (vph)	207	592	0	0	630	255	65	65	424	0	0	0
Turn Type	Prot	NA			NA	Perm	Perm	NA	Perm			
Protected Phases	7	4			8			2				
Permitted Phases						8	2		2			
Total Split (s)	19.0	52.0			33.0	33.0	48.0	48.0	48.0			
Total Lost Time (s)	4.0	6.0			6.0	6.0	6.0	6.0	6.0			
Act Effct Green (s)	43.2	66.1			18.8	18.8	21.9	21.9	21.9			
Actuated g/C Ratio	0.43	0.66			0.19	0.19	0.22	0.22	0.22			
v/c Ratio	0.14	0.25			0.66	0.51	0.18	0.18	0.84			
Control Delay	0.4	0.5			40.7	7.9	29.1	29.1	33.3			
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0	0.0			
Total Delay	0.4	0.5			40.7	7.9	29.1	29.1	33.3			
LOS	А	Α			D	А	С	С	С			
Approach Delay		0.5			31.3			32.3				
Approach LOS		Α			С			С				
Queue Length 50th (m)	0.0	0.1			44.2	0.0	11.4	11.4	44.9			
Queue Length 95th (m)	0.0	0.0			53.4	19.7	19.8	19.8	70.6			
Internal Link Dist (m)		118.1			149.0			197.6			197.9	
Turn Bay Length (m)						60.0			60.0			
Base Capacity (vph)	1484	2337			1372	613	706	706	782			
Starvation Cap Reductn	0	0			0	0	0	0	0			
Spillback Cap Reductn	0	0			0	0	0	0	0			
Storage Cap Reductn	0	0			0	0	0	0	0			
Reduced v/c Ratio	0.14	0.25			0.46	0.42	0.09	0.09	0.54			

Intersection Summary

Cycle Length: 100 Actuated Cycle Length: 100 Offset: 95 (95%), Referenced to phase 4:EBT and 7:EBL, Start of Green Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.84 Intersection Signal Delay: 20.5 Intersection Capacity Utilization 49.2% Analysis Period (min) 15

Intersection LOS: C ICU Level of Service A

Splits and Phases: 4: Hwy 102 NB Ramps & Lacewood Drive

	►Ø4 (R)
48 s	52 s
	Ø7 (R) Ø8
	19 s 33 s

Appendix C - Intersection Performance Analysis 5: Lacewood Drive & Hwy 102 SB Ramps

	≯	-	\mathbf{r}	1	-	*	1	1	1	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	1	٦	<u></u>					۲.	र्भ	1
Traffic Volume (vph)	0	440	65	220	475	0	0	0	0	300	Ō	510
Future Volume (vph)	0	440	65	220	475	0	0	0	0	300	0	510
Satd. Flow (prot)	0	6408	1583	1770	3539	0	0	0	0	1681	1681	1583
Flt Permitted				0.950						0.950	0.950	
Satd. Flow (perm)	0	6408	1583	1770	3539	0	0	0	0	1681	1681	1583
Satd. Flow (RTOR)			76									554
Lane Group Flow (vph)	0	478	71	239	516	0	0	0	0	163	163	554
Turn Type		NA	Perm	Prot	NA					Perm	NA	Free
Protected Phases		4		3	8						6	
Permitted Phases			4							6		Free
Total Split (s)		24.0	24.0	29.0	53.0					47.0	47.0	
Total Lost Time (s)		6.0	6.0	4.0	6.0					6.0	6.0	
Act Effct Green (s)		12.9	12.9	55.9	72.8					15.2	15.2	100.0
Actuated g/C Ratio		0.13	0.13	0.56	0.73					0.15	0.15	1.00
v/c Ratio		0.58	0.26	0.24	0.20					0.64	0.64	0.35
Control Delay		43.6	10.9	1.4	0.3					50.6	50.6	0.6
Queue Delay		0.0	0.0	0.0	0.0					0.0	0.0	0.0
Total Delay		43.6	10.9	1.4	0.3					50.6	50.6	0.6
LOS		D	В	А	А					D	D	Α
Approach Delay		39.4			0.6						19.1	
Approach LOS		D			А						В	
Queue Length 50th (m)		27.1	0.0	2.0	0.0					33.3	33.3	0.0
Queue Length 95th (m)		34.8	11.4	9.3	0.0					52.4	52.4	0.0
Internal Link Dist (m)		108.2			118.1			188.6			191.5	
Turn Bay Length (m)			70.0									90.0
Base Capacity (vph)		1153	347	988	2576					689	689	1583
Starvation Cap Reductn		0	0	0	0					0	0	0
Spillback Cap Reductn		0	0	0	0					0	0	0
Storage Cap Reductn		0	0	0	0					0	0	0
Reduced v/c Ratio		0.41	0.20	0.24	0.20					0.24	0.24	0.35
Intersection Summary												
Cycle Length: 100												

Actuated Cycle Length: 100 Offset: 48 (48%), Referenced to phase 3:WBL and 8:WBT, Start of Green Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.64 Intersection Signal Delay: 17.8 Intersection Capacity Utilization 49.2% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service A

Splits and Phases: 5: Lacewood Drive & Hwy 102 SB Ramps

	🗸 🖌 Ø3 (R)	₩ Ø4
	29 s	24 s
■ 06	← Ø8 (R)	
47 s	53 s	

≯	\rightarrow	1	†	Ŧ	~
EBL	EBR	NBL	NBT	SBT	SBR
5	1	ሻ	44	^	1
35	330	340	755	580	50
35	330	340	755	580	50
1770	1583	1770	3539	3539	1583
0.950		0.261			
1770	1583	486	3539	3539	1583
	359				17
38	359	370	821	630	54
Perm	Perm	pm+pt	NA	NA	Perm
		5	2	6	
4	4	2	-	•	6
28.0	28.0	31.0	62.0	31.0	31.0
6.0	6.0	4.0	6.0	6.0	6.0
8.0	8.0	39.3	37.2	15.6	15.6
0.14	0.14	0.68	0.64	0.27	0.27
0.16	0.68	0.52	0.36	0.66	0.12
27.0	11 0	7 1	53	23.5	14 7
0.0	0.0	0.0	0.0	0.0	0.0
27.0	11.0	7 1	5.3	23.5	14.7
27.0 C	- 11.0 B	Δ	0.0 A	20.0 C	B
12.5	D	71	5.8	22.8	D
12.0 R			Δ	C.	
36	0.0	11 1	15.7	29.9	28
13.8	23.3	34.3	34.8	63.9	12.8
384.9	20.0	04.0	213.8	199.1	12.0
004.0		120.0	210.0	100.1	70
711	850	964	3232	1615	731
0	000	004 0	0202	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0.05	0.42	0.38	0.25	0.39	0.07
ordinated					
) 1			In	tersection	
	EBL 35 35 35 1770 0.950 1770 38 Perm 4 28.0 6.0 8.0 0.14 0.16 27.0 0.0 27.0 C 12.5 B 3.6 13.8 384.9 711 0 0 0.05 Perdinated	EBL EBR 35 330 35 330 35 330 1770 1583 0.950 1770 1770 1583 0.950 359 38 359 9 38 9 9 4 4 28.0 28.0 6.0 6.0 8.0 8.0 0.14 0.14 0.16 0.68 27.0 11.0 C B 12.5 B 3.6 0.0 13.8 23.3 384.9 711 711 850 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EBL EBR NBL 35 330 340 35 330 340 35 330 340 1770 1583 1770 0.950 0.261 1770 1770 1583 486 359 38 359 38 359 370 Perm Perm pm+pt 5 4 4 2 28.0 28.0 31.0 6.0 4.0 8.0 39.3 0.14 0.14 0.68 0.16 0.68 0.52 27.0 11.0 7.1 0.0 0.0 0.0 0.0 27.0 11.0 7.1 C B A 12.5 B 3.6 0.0 11.1 13.8 23.3 34.3 384.9 120.0 711 850 964 0 0 0 0 0 0 0	EBL EBR NBL NBT 35 330 340 755 35 330 340 755 35 330 340 755 1770 1583 1770 3539 0.950 0.261 1770 1583 486 3539 38 359 370 821 Perm Perm pm+pt NA 5 2 4 4 2 28.0 28.0 31.0 62.0 6.0 6.0 4.0 6.0 8.0 39.3 37.2 0.14 0.14 0.68 0.64 0.16 0.68 0.52 0.36 27.0 11.0 7.1 5.3 0.0 0.0 0.0 27.0 11.0 7.1 5.3 3.4.3 34.8 384.9 213.8 A 120.0 711 850 964 3232 0 0 0 0 0	EBL EBR NBL NBT SBT 35 330 340 755 580 35 330 340 755 580 1770 1583 1770 3539 3539 0.950 0.261 1770 1583 486 3539 3539 0.950 0.261 1770 1583 486 3539 3539 38 359 370 821 630 Perm Perm pm+pt NA NA 5 2 6 4 4 2 28.0 28.0 31.0 62.0 31.0 60.0 8.0 8.0 8.0 39.3 37.2 15.6 0.14 0.14 0.68 0.64 0.27 0.16 0.68 0.52 0.36 0.66 27.0 11.0 7.1 5.3 23.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

Splits and Phases: 6: Dunbrack Street & Washmill Lake Drive

Intersection Capacity Utilization 52.4%

Analysis Period (min) 15

ICU Level of Service A

Appendix C - Intersection Performance Analysis 7: Dunbrack Street & 102 NB Ramps

	٭	-	\mathbf{r}	4	←	•	1	Ť	۲	5	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Traffic Volume (vph) Future Volume (vph) Satd. Flow (prot)	0 0 0	0 0 0	0 0 0	110 110 0	4 0 0 1770	ř 175 175 1583	0 0 0	↑↑ 925 925 3539	400 400 1583	0 0 0	↑↑ 625 625 3539	270 270 270 1583
Flt Permitted Satd. Flow (perm) Satd. Flow (RTOR)	0	0	0	0	0.950 1770 120	1583 190 190	0	3539 1005	1583 435 435	0	3539	1583 230 293
Turn Type Protected Phases Permitted Phases	0	Ū	0	Perm 8	NA 8	Free	Ū	NA 2	Perm 2	0	NA 6	Perm 6
Total Split (s) Total Lost Time (s) Act Effct Green (s)				31.0	31.0 6.0 9.1	47.8		69.0 6.0 31.5	69.0 6.0 31.5		69.0 6.0 31.5	69.0 6.0 31.5
V/c Ratio Control Delay Queue Delay					0.19 0.36 21.2 0.0	0.12 0.2 0.0		0.66 0.43 6.7 0.0	0.66 0.36 1.8 0.0		0.66 0.29 5.8 0.0	0.00 0.26 2.4 0.0
Total Delay LOS Approach Delay					21.2 C 8.3	0.2 A		6.7 A 5.2	1.8 A		5.8 A 4.7	2.4 A
Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m)		132.3			9.9 22.4 134.0	0.0 0.0		24.7 42.6 231.5	0.0 9.6		14.7 26.3 155.9	2.2 11.3
Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn					950 0	50.0 1583 0		3539 0	50.0 1583 0		3539 0	15.0 1583 0
Storage Cap Reductin Reduced v/c Ratio					0 0.13	0 0 0.12		0 0.28	0 0.27		0 0.19	0 0.19
Intersection Summary Cycle Length: 100 Actuated Cycle Length: 47.8 Control Type: Actuated-Uncoor Maximum v/c Ratio: 0.43 Intersection Signal Delay: 5.4 Intersection Capacity Utilization Analysis Period (min) 15	dinated n 41.7%			In IC	itersectior	n LOS: A of Service	A					

Splits and Phases: 7: Dunbrack Street & 102 NB Ramps

Appendix C - Intersection Performance Analysis 8: Dunbrack Street & 102 SB Ramps

	≯	-	\mathbf{r}	4	-	*	1	1	1	1	↓	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		با	1					<u></u>	1		<u></u>	1
Traffic Volume (vph)	370	40	800	0	0	0	0	955	515	0	365	35
Future Volume (vph)	370	40	800	0	0	0	0	955	515	0	365	35
Satd. Flow (prot)	0	1783	1583	0	0	0	0	3539	1583	0	3539	1583
Flt Permitted		0.957										
Satd. Flow (perm)	0	1783	1583	0	0	0	0	3539	1583	0	3539	1583
Satd. Flow (RTOR)			697						434			98
Lane Group Flow (vph)	0	445	870	0	0	0	0	1038	560	0	397	38
Turn Type	Perm	NA	Free					NA	Perm		NA	Free
Protected Phases		4						2			6	
Permitted Phases	4		Free						2			Free
Total Split (s)	45.0	45.0						55.0	55.0		55.0	
Total Lost Time (s)		6.0						6.0	6.0		6.0	
Act Effct Green (s)		22.3	64.3					29.1	29.1		29.1	64.3
Actuated g/C Ratio		0.35	1.00					0.45	0.45		0.45	1.00
v/c Ratio		0.72	0.55					0.65	0.59		0.25	0.02
Control Delay		26.9	1.4					16.3	6.2		11.9	0.0
Queue Delay		0.0	0.0					0.0	0.0		0.0	0.0
Total Delay		26.9	1.4					16.3	6.2		11.9	0.0
LOS		С	А					В	A		В	Α
Approach Delay		10.0						12.8			10.9	
Approach LOS		В						В			В	
Queue Length 50th (m)		44.2	0.0					46.5	8.3		14.2	0.0
Queue Length 95th (m)		102.0	0.0					94.1	39.5		31.7	0.0
Internal Link Dist (m)		153.7			159.2			222.4			231.5	
Turn Bay Length (m)									40.0			55.0
Base Capacity (vph)		1165	1583					2794	1341		2794	1583
Starvation Cap Reductn		0	0					0	0		0	0
Spillback Cap Reductn		0	0					0	0		0	0
Storage Cap Reductn		0	0					0	0		0	0
Reduced v/c Ratio		0.38	0.55					0.37	0.42		0.14	0.02
Intersection Summary Cycle Length: 100 Actuated Cycle Length: 64.3 Control Type: Actuated-Uncoor Maximum v/c Ratio: 0.72 Intersection Signal Delay: 11.5	dinated			In	tersectior	n LOS: B						
Intersection Capacity Utilization	64.5%			IC	U Level	of Service	С					

Splits and Phases: 8: Dunbrack Street & 102 SB Ramps

Analysis Period (min) 15

Appendix C - Intersection Performance Analysis 7: Dunbrack Street & 102 NB Ramps

	≯	-	\mathbf{r}	1	-	•	٩.	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स	1		^	1		^	1
Traffic Volume (veh/h)	0	0	0	110	Ō	175	0	925	400	0	625	270
Future Volume (Veh/h)	0	0	0	110	0	175	0	925	400	0	625	270
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	120	0	190	0	1005	435	0	679	293
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)						6						
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX. platoon unblocked												
vC. conflicting volume	1182	1684	340	1344	1684	502	679			1005		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1182	1684	340	1344	1684	502	679			1005		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC. 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	0	100	63	100			100		
cM capacity (veh/h)	92	93	656	110	93	514	909			685		
Direction. Lane #	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3					
Volume Total	310	502	502	435	340	340	293					
Volume Left	120	0	0	0	0	0	0					
Volume Right	190	0	0	435	0	0	293					
cSH	274	1700	1700	1700	1700	1700	1700					
Volume to Capacity	1.13	0.30	0.30	0.26	0.20	0.20	0.17					
Queue Length 95th (m)	106.2	0.0	0.0	0.0	0.0	0.0	0.0					
Control Delay (s)	134.8	0.0	0.0	0.0	0.0	0.0	0.0					
Lane LOS	F											
Approach Delay (s)	134.8	0.0			0.0							
Approach LOS	F											
Intersection Summary												
Average Delay			15.4									
Intersection Capacity Utiliz	ation		43.1%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									

Appendix C - Intersection Performance Analysis 8: Dunbrack Street & 102 SB Ramps

	٦	-	\mathbf{r}	1	-	•	٩.	1	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control	370 370	40 40 Stop	* 800 800	0 0	0 0 Stop	0 0	0 0	↑↑ 955 955 Free	515 515 515	0 0	↑↑ 365 365 Free	ř 35 35
Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage	0.92 402	0.92 43	0.92 870	0.92 0	0% 0.92 0	0.92 0	0.92 0	0.92 1038	0.92 560	0.92 0	0.92 397	0.92 38
Right turn flare (veh) Median type Median storage veh) Upstream signal (m) pX, platoon unblocked								None			None	
vC, conflicting volume vC1, stage 1 conf vol vC2_stage 2 conf vol	916	1435	198	1258	1435	519	397			1038		
vCu, unblocked vol tC, single (s)	916 7.5	1435 6.5	198 6.9	1258 7.5	1435 6.5	519 6.9	397 4.1			1038 4.1		
tF (s) p0 queue free % cM capacity (veh/h)	3.5 0 227	4.0 68 133	3.3 0 809	3.5 0 0	4.0 100 133	3.3 100 502	2.2 100 1158			2.2 100 665		
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (m) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	445 402 0 213 2.09 271.7 544.3 F 234.2 F	870 0 870 809 1.07 178.0 75.7 F	519 0 1700 0.31 0.0 0.0	519 0 1700 0.31 0.0 0.0	560 0 560 1700 0.33 0.0 0.0	198 0 1700 0.12 0.0 0.0 0.0	198 0 1700 0.12 0.0 0.0	38 0 38 1700 0.02 0.0 0.0				
Average Delay Intersection Capacity Utiliza Analysis Period (min)	ation		92.0 66.3% 15	IC	CU Level o	of Service			С			

Appendix C - Intersection Performance Analysis 1: Regency Park Drive/Parkland Drive & Lacewood Drive

	٦	-	\mathbf{r}	4	+	*	•	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	††	1	٦	† †	1	٦	•	1	٦	•	1
Traffic Volume (vph)	305	615	160	170	575	155	165	95	95	140	80	175
Future Volume (vph)	305	615	160	170	575	155	165	95	95	140	80	175
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.311			0.358			0.701			0.690		
Satd. Flow (perm)	579	3539	1583	667	3539	1583	1306	1863	1583	1285	1863	1583
Satd. Flow (RTOR)			88			88			103			190
Lane Group Flow (vph)	332	668	174	185	625	168	179	103	103	152	87	190
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases	6		6	2		2	4		4	8		8
Total Split (s)	17.0	33.0	33.0	20.0	36.0	36.0	37.0	37.0	37.0	37.0	37.0	37.0
Total Lost Time (s)	4.0	6.3	6.3	4.0	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3
Act Effct Green (s)	32.3	18.8	18.8	28.9	17.1	17.1	14.0	14.0	14.0	14.0	14.0	14.0
Actuated g/C Ratio	0.54	0.32	0.32	0.49	0.29	0.29	0.24	0.24	0.24	0.24	0.24	0.24
v/c Ratio	0.62	0.60	0.31	0.37	0.61	0.32	0.58	0.24	0.23	0.50	0.20	0.37
Control Delay	12.6	20.4	10.8	9.1	21.9	11.4	29.7	21.0	6.4	27.3	20.6	6.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	12.6	20.4	10.8	9.1	21.9	11.4	29.7	21.0	6.4	27.3	20.6	6.0
LOS	В	С	В	А	С	В	С	С	А	С	С	Α
Approach Delay		16.8			17.7			21.1			16.5	
Approach LOS		В			В			С			В	
Queue Length 50th (m)	16.3	32.1	6.7	8.3	31.8	6.7	17.9	9.4	0.0	14.9	7.9	0.0
Queue Length 95th (m)	39.1	60.6	23.6	21.7	56.6	22.7	41.8	23.8	10.7	35.8	20.8	14.3
Internal Link Dist (m)		122.8			242.6			314.2			320.2	
Turn Bay Length (m)	55.0		7.0	50.0		7.0	35.0		7.0	35.0		7.0
Base Capacity (vph)	600	1650	785	694	1836	863	700	999	896	689	999	937
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.55	0.40	0.22	0.27	0.34	0.19	0.26	0.10	0.11	0.22	0.09	0.20
Intersection Summary												

Cycle Length: 90 Actuated Cycle Length: 59.4 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.62 Intersection Signal Delay: 17.6 Intersection Capacity Utilization 62.4% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service B

Splits and Phases: 1: Regency Park Drive/Parkland Drive & Lacewood Drive

		Ø2	₩ø4	
17 s	36	s	37 s	
√ Ø5		↓ ₂₆	\$ Ø8	
20 s		33 s	37 s	

	٦	-	$\mathbf{\hat{z}}$	4	+	×	1	1	۲	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ካካ	^			^	1	٦	र्च	1			
Traffic Volume (vph)	790	970	0	0	1015	305	305	5	395	0	0	0
Future Volume (vph)	790	970	0	0	1015	305	305	5	395	0	0	0
Satd. Flow (prot)	3433	3539	0	0	5085	1583	1681	1688	1583	0	0	0
Flt Permitted	0.950						0.950	0.954				
Satd. Flow (perm)	3433	3539	0	0	5085	1583	1681	1688	1583	0	0	0
Satd. Flow (RTOR)						279			92			
Lane Group Flow (vph)	859	1054	0	0	1103	332	169	168	429	0	0	0
Turn Type	Prot	NA			NA	Perm	Perm	NA	Perm			
Protected Phases	7	4			8			2				
Permitted Phases						8	2		2			
Total Split (s)	38.0	74.0			36.0	36.0	46.0	46.0	46.0			
Total Lost Time (s)	4.0	6.0			6.0	6.0	6.0	6.0	6.0			
Act Effct Green (s)	42.2	76.0			29.8	29.8	32.0	32.0	32.0			
Actuated g/C Ratio	0.35	0.63			0.25	0.25	0.27	0.27	0.27			
v/c Ratio	0.71	0.47			0.87	0.55	0.38	0.37	0.88			
Control Delay	11.0	4.7			52.1	11.3	36.9	36.7	51.6			
Queue Delay	2.2	0.8			0.4	0.0	0.0	0.0	0.0			
Total Delay	13.2	5.5			52.5	11.3	36.9	36.8	51.6			
LOS	В	А			D	В	D	D	D			
Approach Delay		8.9			43.0			45.1				
Approach LOS		А			D			D				
Queue Length 50th (m)	112.0	96.6			96.2	10.2	35.4	35.1	81.3			
Queue Length 95th (m)	#138.5	4.5			114.7	38.3	52.5	52.4	115.1			
Internal Link Dist (m)		118.1			149.0			197.6			197.9	
Turn Bay Length (m)						60.0			60.0			
Base Capacity (vph)	1207	2242			1283	608	560	562	589			
Starvation Cap Reductn	213	792			0	0	0	0	0			
Spillback Cap Reductn	0	0			26	0	9	10	0			
Storage Cap Reductn	0	0			0	0	0	0	0			
Reduced v/c Ratio	0.86	0.73			0.88	0.55	0.31	0.30	0.73			
Interaction Summary												

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120 Offset: 61 (51%), Referenced to phase 4:EBT and 7:EBL, Start of Green

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.88

Intersection Signal Delay: 27.5

Intersection Capacity Utilization 64.1%

Analysis Period (min) 15

Intersection LOS: C ICU Level of Service C

95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.

Splits and Phases:	4: Hwy 102 NB Ramps & Lacewood Drive
--------------------	--------------------------------------

	٦	-	\rightarrow	•	←	*	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	1	ሻ	<u></u>					1	र्भ	1
Traffic Volume (vph)	0	1515	300	350	960	0	0	0	0	285	Ō	530
Future Volume (vph)	0	1515	300	350	960	0	0	0	0	285	0	530
Satd. Flow (prot)	0	6408	1583	1770	3539	0	0	0	0	1681	1681	1583
Flt Permitted				0.950						0.950	0.950	
Satd. Flow (perm)	0	6408	1583	1770	3539	0	0	0	0	1681	1681	1583
Satd. Flow (RTOR)			288									358
Lane Group Flow (vph)	0	1647	326	380	1043	0	0	0	0	155	155	576
Turn Type		NA	Perm	Prot	NA					Perm	NA	Free
Protected Phases		4		3	8						6	
Permitted Phases			4							6		Free
Total Split (s)		43.0	43.0	49.0	92.0					28.0	28.0	
Total Lost Time (s)		6.0	6.0	4.0	6.0					6.0	6.0	
Act Effct Green (s)		40.1	40.1	47.7	91.8					16.2	16.2	120.0
Actuated g/C Ratio		0.33	0.33	0.40	0.76					0.14	0.14	1.00
v/c Ratio		0.77	0.45	0.54	0.39					0.68	0.68	0.36
Control Delay		38.5	7.1	6.0	2.7					64.1	64.1	0.6
Queue Delay		0.3	0.0	0.8	0.4					0.0	0.0	0.0
Total Delay		38.7	7.1	6.8	3.1					64.1	64.1	0.6
LOS		D	Α	Α	Α					Е	E	Α
Approach Delay		33.5			4.1						22.9	
Approach LOS		С			Α						С	
Queue Length 50th (m)		103.6	6.3	0.0	0.0					39.0	39.0	0.0
Queue Length 95th (m)		118.5	28.7	m117.9	115.6					60.3	60.3	0.0
Internal Link Dist (m)		108.2			118.1			188.6			191.5	
Turn Bay Length (m)			70.0									90.0
Base Capacity (vph)		2166	725	728	2706					308	308	1583
Starvation Cap Reductn		0	0	134	1029					0	0	0
Spillback Cap Reductn		108	0	0	0					0	0	0
Storage Cap Reductn		0	0	0	0					0	0	0
Reduced v/c Ratio		0.80	0.45	0.64	0.62					0.50	0.50	0.36
Intersection Summary												

Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 120 Offset: 0 (0%), Referenced to phase 3:WBL and 8:WBT, Start of Green Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.77 Intersection Signal Delay: 21.5 Intersection Capacity Utilization 64.1% Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 5: Lacewood Drive & Hwy 102 SB Ramps

Synchro 11 Report February 2025

	≯	\rightarrow	1	†	Ŧ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	1	5	<u></u>	<u>^</u>	1
Traffic Volume (vph)	65	515	475	785	830	80
Future Volume (vph)	65	515	475	785	830	80
Satd. Flow (prot)	1770	1583	1770	3539	3539	1583
Flt Permitted	0.950		0.131			
Satd. Flow (perm)	1770	1583	244	3539	3539	1583
Satd. Flow (RTOR)		560				15
Lane Group Flow (vph)	71	560	516	853	902	87
Turn Type	Perm	Perm	pm+pt	NA	NA	Perm
Protected Phases			5	2	6	
Permitted Phases	4	4	2			6
Total Split (s)	33.0	33.0	43.0	87.0	44.0	44.0
Total Lost Time (s)	6.0	6.0	4.0	6.0	6.0	6.0
Act Effct Green (s)	11.2	11.2	65.3	63.1	27.9	27.9
Actuated g/C Ratio	0.13	0.13	0.75	0.72	0.32	0.32
v/c Ratio	0.31	0.81	0.71	0.33	0.80	0.17
Control Delav	41.7	13.8	22.7	5.1	34.5	21.8
Queue Delav	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	41.7	13.8	22.7	5.1	34.5	21.8
LOS	D	В	С	A	С	C
Approach Delay	17.0			11.7	33.4	
Approach LOS	В			В	С	
Queue Length 50th (m)	11.6	0.0	50.4	19.8	73.1	8.7
Queue Length 95th (m)	27.8	34.5	128.9	50.8	130.4	25.3
Internal Link Dist (m)	384.9			213.8	199.1	
Turn Bay Length (m)			120.0			7.0
Base Capacity (vph)	583	896	908	3134	1640	742
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.12	0.63	0.57	0.27	0.55	0.12
Intersection Summary						
Cycle Length: 120						
Actuated Cycle Length: 87.	1					
Control Type: Actuated-Unc	coordinated					
Maximum v/c Ratio: 0.81						
Intersection Signal Delay: 2	0.0			lr	ntersection	n LOS: B
Intersection Capacity Utiliza	ation 66.8%			IC	CU Level	of Service

Splits and Phases: 6: Dunbrack Street & Washmill Lake Drive

Analysis Period (min) 15

Appendix C - Intersection Performance Analysis 7: Dunbrack Street & 102 NB Ramps

	۶	-	\mathbf{F}	4	←	•	٠	Ť	۲	5	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Traffic Volume (vph) Future Volume (vph) Satd. Flow (prot)	0 0 0	0 0 0	0 0 0	245 245 0	4 0 0 1770	ř 425 425 1583	0 0 0	↑↑ 865 865 3539	420 420 420 1583	0 0 0	↑↑ 990 990 3539	7 365 365 1583
Flt Permitted Satd. Flow (perm) Satd. Flow (RTOR)	0	0	0	0	0.950 1770	1583 453	0	3539	1583 457	0	3539	1583 151
Turn Type Protected Phases Permitted Phases	U	U	U	Perm	200 NA 8	402 Free Free	U	940 NA 2	457 Perm 2	U	NA 6	S97 Perm
Total Split (s) Total Lost Time (s) Act Effct Green (s)				42.0	42.0 6.0 14.3	52.4		58.0 6.0 25.7	58.0 6.0 25.7		58.0 6.0 25.7	58.0 6.0 25.7
Actuated g/C Ratio v/c Ratio Control Delay					0.27 0.55 22.1	1.00 0.29 0.5		0.49 0.54 11.0	0.49 0.45 2.6		0.49 0.62 12.0	0.49 0.47 7.6
Queue Delay Total Delay LOS Approach Delay					0.0 22.1 C 8.4	0.0 0.5 A		0.0 11.0 B 8.2	0.0 2.6 A		0.0 12.0 B 10.8	0.0 7.6 A
Approach LOS Queue Length 50th (m) Queue Length 95th (m)		400.0			A 20.4 50.9	0.0 0.0		A 29.4 57.2	0.0 12.7		B 35.4 68.6	12.7 37.4
Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn		132.3			134.0 1262 0	50.0 1583 0		231.5 3285 0	50.0 1502 0		155.9 3285 0	15.0 1480 0
Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					0 0 0.21	0 0 0.29		0 0 0.29	0 0 0.30		0 0 0.33	0 0 0.27
Intersection Summary Cycle Length: 100 Actuated Cycle Length: 52.4 Control Type: Actuated-Uncoor Maximum v/c Ratio: 0.62 Intersection Signal Delay: 9.3 Intersection Capacity Utilization Analysis Period (min) 15	rdinated n 50.9%			In IC	itersection CU Level o	n LOS: A of Service	A					

Splits and Phases: 7: Dunbrack Street & 102 NB Ramps

Appendix C - Intersection Performance Analysis 8: Dunbrack Street & 102 SB Ramps

	≯	-	\mathbf{r}	∢	+	•	•	t	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	1					^	1		<u></u>	1
Traffic Volume (vph)	260	Ō	735	0	0	0	0	1030	110	0	1030	30
Future Volume (vph)	260	0	735	0	0	0	0	1030	110	0	1030	30
Satd. Flow (prot)	0	1770	1583	0	0	0	0	3539	1583	0	3539	1583
Flt Permitted		0.950										
Satd. Flow (perm)	0	1770	1583	0	0	0	0	3539	1583	0	3539	1583
Satd. Flow (RTOR)			446						86			82
Lane Group Flow (vph)	0	283	799	0	0	0	0	1120	120	0	1120	33
Turn Type	Perm	NA	Free					NA	Perm		NA	Free
Protected Phases		4						2			6	
Permitted Phases	4		Free						2			Free
Total Split (s)	45.0	45.0						75.0	75.0		75.0	
Total Lost Time (s)		6.0						6.0	6.0		6.0	
Act Effct Green (s)		15.0	54.1					26.6	26.6		26.6	54.1
Actuated g/C Ratio		0.28	1.00					0.49	0.49		0.49	1.00
v/c Ratio		0.58	0.50					0.64	0.15		0.64	0.02
Control Delay		23.1	1.2					12.5	3.9		12.5	0.0
Queue Delay		0.0	0.0					0.0	0.0		0.0	0.0
Total Delay		23.1	1.2					12.5	3.9		12.5	0.0
LOS		С	Α					В	А		В	А
Approach Delay		6.9						11.7			12.2	
Approach LOS		А						В			В	
Queue Length 50th (m)		23.2	0.0					39.2	1.6		39.2	0.0
Queue Length 95th (m)		55.6	0.0					73.4	9.5		73.4	0.0
Internal Link Dist (m)		153.7			159.2			222.4			231.5	
Turn Bay Length (m)									40.0			55.0
Base Capacity (vph)		1325	1583					3505	1568		3505	1583
Starvation Cap Reductn		0	0					0	0		0	0
Spillback Cap Reductn		0	0					0	0		0	0
Storage Cap Reductn		0	0					0	0		0	0
Reduced v/c Ratio		0.21	0.50					0.32	0.08		0.32	0.02
Intersection Summary												
Cycle Length: 120 Actuated Cycle Length: 54.1 Control Type: Actuated-Uncoo Maximum v/c Ratio: 0.64 Intersection Signal Delay: 10.3 Intersection Capacity Utilizatio Analysis Period (min) 15	rdinated 3 n 52.9%			In IC	tersectior CU Level o	n LOS: B of Service	A					

Splits and Phases: 8: Dunbrack Street & 102 SB Ramps

¶ø₂	_{Ø4}	
75 s	45 s	
▼ Ø6		
75 s		

Appendix C - Intersection Performance Analysis 7: Dunbrack Street & 102 NB Ramps

	٦	-	\mathbf{r}	4	-	•	٩.	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्भ	1		† †	1		† †	1
Traffic Volume (veh/h)	0	0	0	245	0	425	0	865	420	0	990	365
Future Volume (Veh/h)	0	0	0	245	0	425	0	865	420	0	990	365
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	266	0	462	0	940	457	0	1076	397
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage						0						
Right turn flare (veh)						6		NI			N1	
Median type								None			None	
Iviedian storage ven)												
opstream signal (m)												
pA, platoon unblocked	1516	2016	520	1/70	2016	470	1076			040		
vC, connicting volume	1540	2010	550	1470	2010	470	1070			940		
vC1, stage 1 confivol												
	15/16	2016	538	1/78	2016	470	1076			940		
tC single (s)	7 5	65	69	75	65	69	4 1			<u> </u>		
tC, 2 stage (s)	7.5	0.0	0.5	7.0	0.0	0.5	7.1			7.1		
tF (s)	35	4 0	33	35	40	33	22			22		
n0 queue free %	100	100	100	0.0	100	14	100			100		
cM capacity (veh/h)	11	58	488	88	58	540	644			725		
Direction Lane #	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3			0		
Volume Total	728	470	470	457	538	538	397					
Volume Left	266	0	0	0	0	0	0					
Volume Right	462	0	0	457	0	0	397					
cSH	191	1700	1700	1700	1700	1700	1700					
Volume to Capacity	3.81	0.28	0.28	0.27	0.32	0.32	0.23					
Queue Length 95th (m)	Err	0.0	0.0	0.0	0.0	0.0	0.0					
Control Delay (s)	Err	0.0	0.0	0.0	0.0	0.0	0.0					
Lane LOS	F											
Approach Delay (s)	Err	0.0			0.0							
Approach LOS	F											
Intersection Summary												
Average Delay			2023.1									_
Intersection Capacity Utiliz	ation		56.9%	IC	U Level o	of Service			В			
Analysis Period (min)			15									
Appendix C - Intersection Performance Analysis 8: Dunbrack Street & 102 SB Ramps

	≯	-	\rightarrow	1	-	•	٩.	1	1	1	↓	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control	260 260	4 0 0 Stop	735 735 735	0 0	0 0 Stop	0 0	0 0	↑↑ 1030 1030 Free 0%	ř 110 110	0 0	↑↑ 1030 1030 Free 0%	ř 30 30
Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage	0.92 283	0.92 0	0.92 799	0.92 0	0.92 0	0.92 0	0.92 0	0.92 1120	0.92 120	0.92 0	0.92 1120	0.92 33
Right turn flare (veh) Median type Median storage veh) Upstream signal (m) pX. platoon unblocked								None			None	
vC, conflicting volume vC1, stage 1 conf vol	1680	2240	560	1680	2240	560	1120			1120		
vCu, unblocked vol tC, single (s)	1680 7.5	2240 6.5	560 6.9	1680 7.5	2240 6.5	560 6.9	1120 4.1			1120 4.1		
tF (s) p0 queue free % cM capacity (veh/h)	3.5 0 62	4.0 100 42	3.3 0 472	3.5 0 0	4.0 100 42	3.3 100 472	2.2 100 619			2.2 100 619		
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (m) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	283 283 0 62 4.58 Err Err F 2868.2 F	799 0 799 472 1.69 378.0 342.5 F	560 0 1700 0.33 0.0 0.0 0.0	560 0 1700 0.33 0.0 0.0	120 0 120 1700 0.07 0.0 0.0	560 0 1700 0.33 0.0 0.0	560 0 1700 0.33 0.0 0.0	33 0 33 1700 0.02 0.0 0.0				
Average Delay Intersection Capacity Utiliz Analysis Period (min)	ation		893.1 80.6% 15	IC	CU Level o	of Service			D			

Appendix C - Intersection Performance Analysis 1: Regency Park Drive/Parkland Drive & Lacewood Drive

	٦	-	\mathbf{r}	-	-	*	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	*	1	٦	^	1	<u>۲</u>	•	1	<u>ک</u>	•	1
Traffic Volume (vph)	76	423	115	117	288	95	102	74	175	166	105	124
Future Volume (vph)	76	423	115	117	288	95	102	74	175	166	105	124
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.562			0.427			0.684			0.705		
Satd. Flow (perm)	1047	3539	1583	795	3539	1583	1274	1863	1583	1313	1863	1583
Satd. Flow (RTOR)			88			88			190			135
Lane Group Flow (vph)	83	460	125	127	313	103	111	80	190	180	114	135
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases	6		6	2		2	4		4	8		8
Total Split (s)	12.0	35.0	35.0	13.0	36.0	36.0	42.0	42.0	42.0	42.0	42.0	42.0
Total Lost Time (s)	4.0	6.3	6.3	4.0	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3
Act Effct Green (s)	21.8	13.9	13.9	23.9	16.9	16.9	12.7	12.7	12.7	12.7	12.7	12.7
Actuated g/C Ratio	0.44	0.28	0.28	0.49	0.34	0.34	0.26	0.26	0.26	0.26	0.26	0.26
v/c Ratio	0.14	0.46	0.24	0.23	0.26	0.17	0.34	0.17	0.34	0.53	0.24	0.26
Control Delay	7.5	18.0	8.6	7.9	14.6	6.5	19.2	16.1	5.1	23.2	16.9	5.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	7.5	18.0	8.6	7.9	14.6	6.5	19.2	16.1	5.1	23.2	16.9	5.2
LOS	Α	В	А	А	В	Α	В	В	А	С	В	А
Approach Delay		15.0			11.5			11.5			15.8	
Approach LOS		В			В			В			В	
Queue Length 50th (m)	3.2	18.9	2.6	5.1	12.0	1.0	8.2	5.6	0.0	14.1	8.2	0.0
Queue Length 95th (m)	10.6	37.2	14.6	15.1	25.2	11.0	21.7	15.6	12.2	33.8	20.8	10.3
Internal Link Dist (m)		122.8			242.6			314.2			320.2	
Turn Bay Length (m)	55.0		7.0	50.0		7.0	35.0		7.0	35.0		7.0
Base Capacity (vph)	600	2180	1008	580	2256	1040	948	1387	1227	977	1387	1213
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.14	0.21	0.12	0.22	0.14	0.10	0.12	0.06	0.15	0.18	0.08	0.11
Interportion Cummer:												

Intersection Summary

Cycle Length: 90 Actuated Cycle Length: 49 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 13.6 Intersection Capacity Utilization 47.9% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service A

Splits and Phases: 1: Regency Park Drive/Parkland Drive & Lacewood Drive

▶ _{Ø1}	₩ Ø2	
12 s	36 s	42 s
√ Ø5	2 06	↓ ∞8
13 s	35 s	42 s

	٭	-	\mathbf{r}	1	-	*	1	†	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^			***	1	2	ť.	*			
Traffic Volume (vph)	190	464	0	0	499	235	120	Ō	390	0	0	0
Future Volume (vph)	190	464	0	0	499	235	120	0	390	0	0	0
Satd. Flow (prot)	3433	3539	0	0	5085	1583	1681	1681	1583	0	0	0
Flt Permitted	0.950						0.950	0.950				
Satd. Flow (perm)	3433	3539	0	0	5085	1583	1681	1681	1583	0	0	0
Satd. Flow (RTOR)						255			262			
Lane Group Flow (vph)	207	504	0	0	542	255	65	65	424	0	0	0
Turn Type	Prot	NA			NA	Perm	Perm	NA	Perm			
Protected Phases	7	4			8			2				
Permitted Phases						8	2		2			
Total Split (s)	19.0	52.0			33.0	33.0	48.0	48.0	48.0			
Total Lost Time (s)	4.0	6.0			6.0	6.0	6.0	6.0	6.0			
Act Effct Green (s)	49.1	69.9			16.8	16.8	18.1	18.1	18.1			
Actuated g/C Ratio	0.49	0.70			0.17	0.17	0.18	0.18	0.18			
v/c Ratio	0.12	0.20			0.63	0.53	0.21	0.21	0.85			
Control Delay	0.3	0.3			41.9	8.9	32.6	32.6	29.7			
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0	0.0			
Total Delay	0.3	0.3			41.9	8.9	32.6	32.6	29.7			
LOS	А	А			D	А	С	С	С			
Approach Delay		0.3			31.4			30.3				
Approach LOS		А			С			С				
Queue Length 50th (m)	0.1	0.0			38.1	0.0	12.1	12.1	32.7			
Queue Length 95th (m)	0.5	0.0			47.7	20.5	20.9	20.9	60.3			
Internal Link Dist (m)		118.1			149.0			197.6			197.9	
Turn Bay Length (m)						60.0			60.0			
Base Capacity (vph)	1686	2475			1372	613	706	706	816			
Starvation Cap Reductn	0	0			0	0	0	0	0			
Spillback Cap Reductn	0	0			0	0	0	0	0			
Storage Cap Reductn	0	0			0	0	0	0	0			
Reduced v/c Ratio	0.12	0.20			0.40	0.42	0.09	0.09	0.52			
Internetien Originalis												

Intersection Summary

Cycle Length: 100 Actuated Cycle Length: 100 Offset: 94 (94%), Referenced to phase 4:EBT and 7:EBL, Start of Green Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.85 Intersection Signal Delay: 20.4 Intersection Capacity Utilization 47.0% Analysis Period (min) 15

Intersection LOS: C ICU Level of Service A

Splits and Phases: 4: Hwy 102 NB Ramps & Lacewood Drive

	►Ø4 (R)
48 s	52 s
	Ø7 (R) Ø8
	19 s 33 s

	٦	-	\rightarrow	1	-	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	1	ľ	^					1	÷.	1
Traffic Volume (vph)	0	354	65	220	399	0	0	0	0	300	Ō	510
Future Volume (vph)	0	354	65	220	399	0	0	0	0	300	0	510
Satd. Flow (prot)	0	6408	1583	1770	3539	0	0	0	0	1681	1681	1583
Flt Permitted				0.950						0.950	0.950	
Satd. Flow (perm)	0	6408	1583	1770	3539	0	0	0	0	1681	1681	1583
Satd. Flow (RTOR)			76									554
Lane Group Flow (vph)	0	385	71	239	434	0	0	0	0	163	163	554
Turn Type		NA	Perm	Prot	NA					Perm	NA	Free
Protected Phases		4		3	8						6	
Permitted Phases			4							6		Free
Total Split (s)		24.0	24.0	29.0	53.0					47.0	47.0	
Total Lost Time (s)		6.0	6.0	4.0	6.0					6.0	6.0	
Act Effct Green (s)		11.5	11.5	57.3	72.8					15.2	15.2	100.0
Actuated g/C Ratio		0.12	0.12	0.57	0.73					0.15	0.15	1.00
v/c Ratio		0.52	0.29	0.24	0.17					0.64	0.64	0.35
Control Delay		44.0	11.7	2.1	0.3					50.6	50.6	0.6
Queue Delay		0.0	0.0	0.0	0.0					0.0	0.0	0.0
Total Delay		44.0	11.7	2.1	0.3					50.6	50.6	0.6
LOS		D	В	Α	Α					D	D	A
Approach Delay		39.0			0.9						19.1	
Approach LOS		D			Α						В	
Queue Length 50th (m)		21.8	0.0	5.5	0.0					33.3	33.3	0.0
Queue Length 95th (m)		29.1	11.6	17.4	0.0					52.4	52.4	0.0
Internal Link Dist (m)		108.2			118.1			188.6			191.5	
Turn Bay Length (m)			70.0									90.0
Base Capacity (vph)		1153	347	1013	2576					689	689	1583
Starvation Cap Reductn		0	0	0	0					0	0	0
Spillback Cap Reductn		0	0	0	0					0	0	0
Storage Cap Reductn		0	0	0	0					0	0	0
Reduced v/c Ratio		0.33	0.20	0.24	0.17					0.24	0.24	0.35
Intersection Summary												
Cuala Lanath, 100												

Cycle Length: 100 Actuated Cycle Length: 100 Offset: 48 (48%), Referenced to phase 3:WBL and 8:WBT, Start of Green Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.64 Intersection Signal Delay: 17.5 Intersection Capacity Utilization 47.0% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service A

Splits and Phases: 5: Lacewood Drive & Hwy 102 SB Ramps

	🛡 🖌 Ø3 (R)	₩ Ø4
	29 s	24 s
46	← (78 (P)	
47 s	53 s	

	≯	\rightarrow	1	†	Ŧ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	۲	*	۲	^	^	1
Traffic Volume (vph)	35	352	340	755	580	50
Future Volume (vph)	35	352	340	755	580	50
Satd. Flow (prot)	1770	1583	1770	3539	3539	1583
Flt Permitted	0.950		0.259			
Satd, Flow (perm)	1770	1583	482	3539	3539	1583
Satd. Flow (RTOR)		383				17
Lane Group Flow (vph)	38	383	370	821	630	54
Turn Type	Perm	Perm	nm+nt	NA	NA	Perm
Protected Phases			5	2	6	
Permitted Phases	4	4	2	-	Ŭ	6
Total Split (s)	28.0	28.0	31 0	62.0	31.0	31.0
Total Lost Time (s)	6.0	6.0	4.0	6.0	6.0	6.0
Act Effct Green (s)	8.1	8.1	39.4	37.3	15.7	15.7
Actuated g/C Ratio	0.14	0.14	0.68	0.64	0.27	0.27
v/c Ratio	0.15	0.70	0.52	0.36	0.66	0.12
Control Delay	26.9	11.0	73	53	23.7	14.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	26.9	11.0	73	5.3	23.7	14.8
	20.0 C	B	л.о А	0.0 A	20.1 C	- 1.0 B
Approach Delay	12.5	2		59	23.0	2
Approach LOS	12.0 R			0.0 A	20.0 C	
Queue Length 50th (m)	36	0.0	11 1	15.7	29.9	28
Queue Length 95th (m)	13.8	24.2	35.5	35.7	64.5	13.0
Internal Link Dist (m)	384.9	21.2	00.0	204.0	199.1	10.0
Turn Bay Length (m)	001.0		120.0	201.0	100.1	70
Base Canacity (vnh)	709	864	961	3225	1612	730
Starvation Can Reductn	0	0	0	0220	0	00
Snillback Can Reductn	0	0	0	0	0	0
Storage Can Reducto	0	0	0	0	0	0
Reduced v/c Ratio	0.05	0 4 4	0 20	0.25	0 30	0.07
	0.00	0.74	0.00	0.20	0.00	0.07
Intersection Summary						
Cycle Length: 90 Actuated Cycle Length: 58.1 Control Type: Actuated-Uncc	ordinated					

Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.70 Intersection Signal Delay: 12.2 Intersection Capacity Utilization 52.4% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service A

Splits and Phases: 6: Dunbrack Street & Washmill Lake Drive

Appendix C - Intersection Performance Analysis 7: Dunbrack Street & 102 NB Ramps

	۶	→	\mathbf{F}	4	←	•	1	1	۲	5	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Traffic Volume (vph) Future Volume (vph) Satd. Flow (prot)	0 0 0	0 0 0	0 0 0	110 110 0	4 0 0 1770	175 175 175 1583	0 0 0	↑↑ 925 925 3539	400 400 1583	0 0 0	↑↑ 636 636 3539	281 281 281 1583
Flt Permitted Satd. Flow (perm) Satd. Flow (RTOR)	0	0	0	0	0.950 1770	1583 190	0	3539	1583 435	0	3539	1583 234
Lane Group Flow (vph) Turn Type Protected Phases	0	0	0	0 Perm o	120 NA 8	190 Free	0	1005 NA 2	435 Perm	0	691 NA 6	305 Perm
Total Split (s) Total Lost Time (s) Act Effct Green (s)				31.0	31.0 6.0 9.1	47.8		69.0 6.0 31.5	69.0 6.0 31.5		69.0 6.0 31.5	69.0 6.0 31.5
Actuated g/C Ratio v/c Ratio Control Delay					0.19 0.36 21.2	1.00 0.12 0.2		0.66 0.43 6.7	0.66 0.36 1.8		0.66 0.30 5.8	0.66 0.27 2.5
Queue Delay Total Delay LOS					0.0 21.2 C 8 3	0.0 0.2 A		0.0 6.7 A 5.2	0.0 1.8 A		0.0 5.8 A	0.0 2.5 A
Approach LOS Queue Length 50th (m) Queue Length 95th (m)					0.3 A 9.9 22.4	0.0 0.0		5.2 A 24.7 42.6	0.0 9.6		4.0 A 15.1 26.9	2.5 12.0
Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph)		132.3			134.0 950	60.0 1583		231.5 3539	50.0 1583		165.7 3539	15.0 1583
Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					0 0 0.13	0 0 0.12		0 0 0.28	0 0 0.27		0 0 0.20	0 0 0.19
Intersection Summary Cycle Length: 100 Actuated Cycle Length: 47.8 Control Type: Actuated-Uncoordi Maximum v/c Ratio: 0.43 Intersection Signal Delay: 5.4 Intersection Capacity Utilization 4 Analysis Period (min) 15	nated			lr IC	Itersection	n LOS: A of Service	A					

Splits and Phases: 7: Dunbrack Street & 102 NB Ramps

Appendix C - Intersection Performance Analysis 8: Dunbrack Street & 102 SB Ramps

	≯	-	\mathbf{r}	4	+	•	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ب ا	1					<u>^</u>	1		† †	1
Traffic Volume (vph)	370	40	800	0	0	0	0	955	515	0	365	46
Future Volume (vph)	370	40	800	0	0	0	0	955	515	0	365	46
Satd. Flow (prot)	0	1783	1583	0	0	0	0	3539	1583	0	3539	1583
Flt Permitted		0.957										
Satd. Flow (perm)	0	1783	1583	0	0	0	0	3539	1583	0	3539	1583
Satd. Flow (RTOR)			697						434			98
Lane Group Flow (vph)	0	445	870	0	0	0	0	1038	560	0	397	50
Turn Type	Perm	NA	Free					NA	Perm		NA	Free
Protected Phases		4						2			6	
Permitted Phases	4		Free						2			Free
Total Split (s)	45.0	45.0						55.0	55.0		55.0	
Total Lost Time (s)		6.0						6.0	6.0		6.0	
Act Effct Green (s)		22.3	64.3					29.1	29.1		29.1	64.3
Actuated g/C Ratio		0.35	1.00					0.45	0.45		0.45	1.00
v/c Ratio		0.72	0.55					0.65	0.59		0.25	0.03
Control Delay		26.9	1.4					16.3	6.2		11.9	0.0
Queue Delay		0.0	0.0					0.0	0.0		0.0	0.0
Total Delay		26.9	1.4					16.3	6.2		11.9	0.0
LOS		С	A					В	A		В	A
Approach Delay		10.0						12.8			10.6	
Approach LOS		В						В			В	
Queue Length 50th (m)		44.2	0.0					46.5	8.3		14.2	0.0
Queue Length 95th (m)		102.0	0.0					94.1	39.5		31.7	0.0
Internal Link Dist (m)		153.7			159.2			222.4			231.5	
Turn Bay Length (m)									40.0			55.0
Base Capacity (vph)		1165	1583					2794	1341		2794	1583
Starvation Cap Reductn		0	0					0	0		0	0
Spillback Cap Reductn		0	0					0	0		0	0
Storage Cap Reductn		0	0					0	0		0	0
Reduced v/c Ratio		0.38	0.55					0.37	0.42		0.14	0.03
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 64.3												
Control Type: Actuated-Uncoor	dinated											
Maximum v/c Ratio: 0.72												
Intersection Signal Delay: 11.4				In	tersectior	1 LOS: B	-					
Intersection Capacity Utilization Analysis Period (min) 15	64.5%			IC	CU Level o	of Service	С					

Splits and Phases: 8: Dunbrack Street & 102 SB Ramps

	∕	-	+	•	×	-
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control	* 80 80	↑↑ 375 375 Free 0%	↑ 510 510 Free	17 17	22 22 Stop	68 68
Grade Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage	0.92 87	0% 0.92 408	0% 0.92 554	0.92 18	0% 0.92 24	0.92 74
Right turn flare (veh) Median type Median storage veh) Upstream signal (m) pX, platoon unblocked		None	None			
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	572				941	286
vCu, unblocked vol	572				941	286
tC, single (s) tC, 2 stage (s)	4.1				6.8	6.9
tF (s) p0 queue free % cM capacity (veh/h)	2.2 91 997				3.5 90 239	3.3 90 711
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	SB 1
Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (m) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	87 87 0 997 0.09 2.3 9.0 A 1.6	204 0 1700 0.12 0.0 0.0	204 0 1700 0.12 0.0 0.0	369 0 1700 0.22 0.0 0.0 0.0	203 0 18 1700 0.12 0.0 0.0	98 24 74 479 0.20 6.1 14.4 B 14.4 B
Intersection Summary Average Delay Intersection Capacity Utiliz Analysis Period (min)	zation		1.9 34.5% 15	IC	CU Level o	of Service

Appendix C - Intersection Performance Analysis 1: Regency Park Drive/Parkland Drive & Lacewood Drive

	٦	-	$\mathbf{\hat{z}}$	4	-	•	1	Ť	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	*	1	٦	- ††	1	ሻ	↑	1	ሻ	↑	1
Traffic Volume (vph)	244	554	136	219	518	147	140	164	152	133	122	140
Future Volume (vph)	244	554	136	219	518	147	140	164	152	133	122	140
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.422			0.348			0.672			0.645		
Satd. Flow (perm)	786	3539	1583	648	3539	1583	1252	1863	1583	1201	1863	1583
Satd. Flow (RTOR)			88			88			106			130
Lane Group Flow (vph)	265	602	148	238	563	160	152	178	165	145	133	152
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases	6		6	2		2	4		4	8		8
Total Split (s)	17.0	33.0	33.0	20.0	36.0	36.0	37.0	37.0	37.0	37.0	37.0	37.0
Total Lost Time (s)	4.0	6.3	6.3	4.0	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3
Act Effct Green (s)	28.7	16.4	16.4	30.2	17.1	17.1	13.0	13.0	13.0	13.0	13.0	13.0
Actuated g/C Ratio	0.50	0.29	0.29	0.53	0.30	0.30	0.23	0.23	0.23	0.23	0.23	0.23
v/c Ratio	0.47	0.60	0.29	0.43	0.53	0.30	0.54	0.42	0.38	0.54	0.32	0.33
Control Delay	9.8	21.4	10.4	9.1	19.6	10.4	28.6	23.5	11.5	28.9	22.0	8.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	9.8	21.4	10.4	9.1	19.6	10.4	28.6	23.5	11.5	28.9	22.0	8.3
LOS	Α	С	В	А	В	В	С	С	В	С	С	Α
Approach Delay		16.8			15.4			21.1			19.5	
Approach LOS		В			В			С			В	
Queue Length 50th (m)	11.7	28.3	4.6	10.3	25.7	5.5	14.1	16.0	5.0	13.4	11.7	1.8
Queue Length 95th (m)	30.6	57.6	20.2	27.5	50.4	21.1	36.9	39.1	21.6	35.7	30.2	16.0
Internal Link Dist (m)		122.8			242.6			314.2			320.2	
Turn Bay Length (m)	55.0		7.0	50.0		7.0	35.0		7.0	35.0		7.0
Base Capacity (vph)	668	1721	815	705	1915	897	700	1042	932	671	1042	943
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.40	0.35	0.18	0.34	0.29	0.18	0.22	0.17	0.18	0.22	0.13	0.16
Intersection Summary												

Intersection Summary

Cycle Length: 90 Actuated Cycle Length: 57.4 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.60 Intersection Signal Delay: 17.5 Intersection Capacity Utilization 62.9% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service B

Splits and Phases: 1: Regency Park Drive/Parkland Drive & Lacewood Drive

▶ _{Ø1}	4	Ø2	≪‡ _{Ø4}
17 s	36 :	S	37 s
√ Ø5		↓ ₂₀₆	€ ∞8
20 s		33 s	37 s

	≯	-	\mathbf{r}	1	-	*	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘሻ	^			^	1	ľ	ŧ	1			
Traffic Volume (vph)	790	859	0	0	898	305	305	5	395	0	0	0
Future Volume (vph)	790	859	0	0	898	305	305	5	395	0	0	0
Satd. Flow (prot)	3433	3539	0	0	5085	1583	1681	1688	1583	0	0	0
Flt Permitted	0.950						0.950	0.954				
Satd. Flow (perm)	3433	3539	0	0	5085	1583	1681	1688	1583	0	0	0
Satd. Flow (RTOR)						315			124			
Lane Group Flow (vph)	859	934	0	0	976	332	169	168	429	0	0	0
Turn Type	Prot	NA			NA	Perm	Perm	NA	Perm			
Protected Phases	7	4			8			2				
Permitted Phases						8	2		2			
Total Split (s)	38.0	74.0			36.0	36.0	46.0	46.0	46.0			
Total Lost Time (s)	4.0	6.0			6.0	6.0	6.0	6.0	6.0			
Act Effct Green (s)	45.0	77.7			28.7	28.7	30.3	30.3	30.3			
Actuated g/C Ratio	0.38	0.65			0.24	0.24	0.25	0.25	0.25			
v/c Ratio	0.67	0.41			0.80	0.54	0.40	0.39	0.87			
Control Delay	10.8	3.4			48.6	8.5	38.4	38.2	48.1			
Queue Delay	1.6	0.5			0.2	0.0	0.0	0.0	0.0			
Total Delay	12.4	3.8			48.8	8.5	38.4	38.2	48.1			
LOS	В	А			D	А	D	D	D			
Approach Delay		7.9			38.6			43.8				
Approach LOS		А			D			D				
Queue Length 50th (m)	116.4	78.7			82.1	3.2	36.3	36.1	74.7			
Queue Length 95th (m)	#139.6	3.2			99.4	28.3	52.5	52.4	106.3			
Internal Link Dist (m)		118.1			149.0			197.6			197.9	
Turn Bay Length (m)						60.0			60.0			
Base Capacity (vph)	1286	2291			1274	633	560	562	610			
Starvation Cap Reductn	246	818			0	0	0	0	0			
Spillback Cap Reductn	0	0			33	0	0	0	0			
Storage Cap Reductn	0	0			0	0	0	0	0			
Reduced v/c Ratio	0.83	0.63			0.79	0.52	0.30	0.30	0.70			

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 61 (51%), Referenced to phase 4:EBT and 7:EBL, Start of Green

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.87

Intersection Signal Delay: 25.4 Intersection Capacity Utilization 63.3%

Analysis Period (min) 15

Intersection LOS: C ICU Level of Service B

95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.

Splits and Phases:	4: Hwy 102 NB Ramps & Lacewood Drive
--------------------	--------------------------------------

	۶	-	\mathbf{i}	4	+	•	1	Ť	۲	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	1	1	<u></u>					1	ب ا ا	1
Traffic Volume (vph)	0	1364	300	350	853	0	0	0	0	285	Ō	530
Future Volume (vph)	0	1364	300	350	853	0	0	0	0	285	0	530
Satd. Flow (prot)	0	6408	1583	1770	3539	0	0	0	0	1681	1681	1583
Flt Permitted				0.950						0.950	0.950	
Satd. Flow (perm)	0	6408	1583	1770	3539	0	0	0	0	1681	1681	1583
Satd. Flow (RTOR)			320									389
Lane Group Flow (vph)	0	1483	326	380	927	0	0	0	0	155	155	576
Turn Type		NA	Perm	Prot	NA					Perm	NA	Free
Protected Phases		4		3	8						6	
Permitted Phases			4							6		Free
Total Split (s)		43.0	43.0	49.0	92.0					28.0	28.0	
Total Lost Time (s)		6.0	6.0	4.0	6.0					6.0	6.0	
Act Effct Green (s)		37.3	37.3	50.5	91.8					16.2	16.2	120.0
Actuated g/C Ratio		0.31	0.31	0.42	0.76					0.14	0.14	1.00
v/c Ratio		0.74	0.46	0.51	0.34					0.68	0.68	0.36
Control Delay		39.4	5.5	6.2	1.8					64.1	64.1	0.6
Queue Delay		0.3	0.0	0.5	0.2					0.0	0.0	0.0
Total Delay		39.6	5.5	6.8	2.1					64.1	64.1	0.6
LOS		D	Α	А	Α					E	E	Α
Approach Delay		33.5			3.4						22.9	
Approach LOS		С			Α						С	
Queue Length 50th (m)		95.0	1.0	8.3	0.0					39.0	39.0	0.0
Queue Length 95th (m)		103.8	21.0	m132.3	96.1					60.3	60.3	0.0
Internal Link Dist (m)		108.2			118.1			188.6			191.5	
Turn Bay Length (m)			70.0									90.0
Base Capacity (vph)		2071	728	759	2706					308	308	1583
Starvation Cap Reductn		0	0	122	946					0	0	0
Spillback Cap Reductn		137	0	0	0					0	0	0
Storage Cap Reductn		0	0	0	0					0	0	0
Reduced v/c Ratio		0.77	0.45	0.60	0.53					0.50	0.50	0.36
Intersection Summary												

Intersection Summar

Cycle Length: 120 Actuated Cycle Length: 120 Offset: 0 (0%), Referenced to phase 3:WBL and 8:WBT, Start of Green Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.74 Intersection Signal Delay: 21.3 Intersection LOS: C Intersection Capacity Utilization 63.3% Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 5: Lacewood Drive & Hwy 102 SB Ramps

Synchro 11 Report February 2025

	≯	\rightarrow	1	†	Ŧ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u>۲</u>	*	۲	^	^	1
Traffic Volume (vph)	65	535	475	785	830	80
Future Volume (vph)	65	535	475	785	830	80
Satd. Flow (prot)	1770	1583	1770	3539	3539	1583
Flt Permitted	0.950		0.129			
Satd, Flow (perm)	1770	1583	240	3539	3539	1583
Satd. Flow (RTOR)		564				15
Lane Group Flow (vph)	71	582	516	853	902	87
Turn Type	Perm	Perm	pm+pt	NA	NA	Perm
Protected Phases	-	-	5	2	6	-
Permitted Phases	4	4	2			6
Total Split (s)	33.0	33.0	43.0	87.0	44.0	44.0
Total Lost Time (s)	6.0	6.0	4.0	6.0	6.0	6.0
Act Effct Green (s)	11.9	11.9	65.6	63.5	28.1	28.1
Actuated g/C Ratio	0.13	0.13	0.74	0.72	0.32	0.32
v/c Ratio	0.30	0.83	0.72	0.34	0.80	0.17
Control Delay	40.9	15.5	23.8	5.4	35.2	22.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	40.9	15.5	23.8	5.4	35.2	22.3
LOS	D	В	C	A	D	C
Approach Delay	18.3	-	•	12.4	34.1	•
Approach LOS	B			B	C	
Queue Length 50th (m)	11.6	2.9	50.9	19.8	73.1	8.7
Queue Length 95th (m)	27.6	41.2	133.8	54.2	133.8	25.8
Internal Link Dist (m)	384.9			204.0	199 1	_0.0
Turn Bay Length (m)	00110		120.0	20110	100.1	70
Base Canacity (vph)	578	897	901	3109	1629	736
Starvation Can Reducto	0,0	0	0	0	0_0	0
Snillback Can Reductn	0	0	0	0	0	0
Storage Can Reducto	0	0	0	0	0	0
Reduced v/c Ratio	0.12	0.65	0.57	0.27	0.55	0.12
Interportion Cummor:	0.12	0.00	0.01	0.21	0.00	0.12
Intersection Summary						
Cycle Length: 120	0					
Actuated Cycle Length: 88.2	2					
Control Type: Actuated-Unc	coordinated					

Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.83 Intersection Signal Delay: 20.8 Intersection Capacity Utilization 66.8% Analysis Period (min) 15

Intersection LOS: C ICU Level of Service C

Splits and Phases: 6: Dunbrack Street & Washmill Lake Drive

Appendix C - Intersection Performance Analysis 7: Dunbrack Street & 102 NB Ramps

	۶	-	\mathbf{F}	4	←	•	1	Ť	۲	5	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Traffic Volume (vph) Future Volume (vph) Satd. Flow (prot)	0 0 0	0 0 0	0 0 0	245 245 0	4 0 0 1770	425 425 425 1583	0 0 0	↑↑ 865 865 3539	420 420 420 1583	0 0 0	↑↑ 1000 1000 3539	75 375 375 1583
Flt Permitted Satd. Flow (perm) Satd. Flow (RTOR)	0	0	0	0	0.950 1770	1583 462	0	3539	1583 457	0	3539	1583 154
Lane Group Flow (vph) Turn Type Protected Phases	0	0	0	0 Perm	266 NA 8	462 Free	0	940 NA 2	457 Perm	0	1087 NA 6	408 Perm
Total Split (s) Total Lost Time (s) Act Effct Green (s) Actuated g/C Ratio				8 42.0	42.0 6.0 14.4 0.27	53.1		58.0 6.0 26.3 0.50	2 58.0 6.0 26.3 0.50		58.0 6.0 26.3 0.50	58.0 6.0 26.3 0.50
V/C Ratio Control Delay Queue Delay Total Delay LOS					0.56 22.5 0.0 22.5 C	0.29 0.5 0.0 0.5 A		0.54 10.9 0.0 10.9 B	0.45 2.6 0.0 2.6 A		0.62 12.0 0.0 12.0 B	0.47 7.7 0.0 7.7 A
Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m)		420.0			8.5 A 21.3 51.3	0.0		8.2 A 29.7 57.4	0.0 12.6		10.8 B 36.3 69.7	13.3 38.8
Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio		132.3			134.0 1242 0 0 0 0 0.21	60.0 1583 0 0 0 0 0.29		231.5 3279 0 0 0 0 0.29	50.0 1500 0 0 0 0.30		3279 0 0 0 0.33	15.0 1478 0 0 0 0.28
Intersection Summary Cycle Length: 100 Actuated Cycle Length: 53.1 Control Type: Actuated-Uncoord Maximum v/c Ratio: 0.62 Intersection Signal Delay: 9.3 Intersection Capacity Utilization Analysis Period (min) 15	linated 51.2%			lr IC	ntersection CU Level (n LOS: A of Service	A					

Splits and Phases: 7: Dunbrack Street & 102 NB Ramps

Appendix C - Intersection Performance Analysis 8: Dunbrack Street & 102 SB Ramps

	٦	-	$\mathbf{\hat{z}}$	4	+	*	1	Ť	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Traffic Volume (vph) Future Volume (vph)	260 260	4 0 0	735 735 735	0 0	0 0	0	0 0	↑↑ 1030 1030	110 110	0	↑↑ 1030 1030	40 40 40
Satd. Flow (prot) Flt Permitted	0	0.950	1583	0	0	0	0	3539	1583	0	3539	1583
Satd. Flow (perifi) Satd. Flow (RTOR)	0	283	446	0	0	0	0	1120	1000 86 120	0	1120	1000 82
Turn Type Protected Phases	Perm	203 NA 4	Free	U	U	U	0	NA 2	Perm	U	NA 6	Free
Permitted Phases Total Split (s) Total Lost Time (s)	4 45.0	45.0 6.0	Free					- 75.0 6.0	2 75.0 6.0		75.0 6.0	Free
Act Effct Green (s) Actuated g/C Ratio		15.0 0.28 0.58	54.1 1.00					26.6 0.49	26.6 0.49 0.15		26.6 0.49	54.1 1.00
Control Delay Queue Delay		23.1 0.0	0.30 1.2 0.0					12.5 0.0	3.9 0.0		12.5 0.0	0.0
Total Delay LOS Approach Delay Approach LOS		23.1 C 6.9 A	1.2 A					12.5 B 11.7 B	3.9 A		12.5 B 12.1 B	0.0 A
Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m)		23.2 55.6 153.7	0.0 0.0		159.2			39.2 73.4 222.4	1.6 9.5		39.2 73.4 231.5	0.0 0.0
Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn		1325 0	1583 0					3505 0	40.0 1568 0		3505 0	55.0 1583 0
Spillback Cap Reductn Storage Cap Reductn Reduced v/a Patio		0	0					0	0		0	0
Intersection Summary Cycle Length: 120 Actuated Cycle Length: 54.1 Control Type: Actuated-Unco Maximum v/c Ratio: 0.64 Intersection Signal Delay: 10 Intersection Capacity Utilizat Analysis Period (min) 15	bordinated 0.3 ion 52.9%	0.21	0.50	In IC	tersectior CU Level o	n LOS: B of Service	A	0.32	0.08		0.32	0.03

Splits and Phases: 8: Dunbrack Street & 102 SB Ramps

↑ ø2	<u></u> ⊿ ₀₄	
75 s	45 s	
▼ Ø6		
75 s		

	∕	-	+	•	×	-
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control	139 139 139	↑↑ 865 865 Free	↑ 700 700 Free	25 25	20 20 Stop	104 104
Grade Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (m) Walking Speed (m/s)	0.92 151	0% 0.92 940	0% 0.92 761	0.92 27	0% 0.92 22	0.92 113
Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (m) pX, platoon unblocked		None	None			
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	788				1546	394
vCu, unblocked vol	788				1546	394
tC, single (s)	4.1				6.8	6.9
tF (s) p0 queue free % cM capacity (veh/h)	2.2 82 827				3.5 74 86	3.3 81 605
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	SB 1
Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (m) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	151 151 0 827 0.18 5.3 10.3 B 1.4	470 0 1700 0.28 0.0 0.0	470 0 1700 0.28 0.0 0.0	507 0 1700 0.30 0.0 0.0 0.0	281 0 27 1700 0.17 0.0 0.0	135 22 113 305 0.44 17.3 25.9 D 25.9 D
Intersection Summary Average Delay Intersection Capacity Utili Analysis Period (min)	zation		2.5 45.4% 15	IC	CU Level o	of Service

Appendix C - Intersection Performance Analysis 1: Regency Park Drive/Parkland Drive & Lacewood Drive

	٦	-	\mathbf{r}	4	←	•	1	1	۲	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	^	1	ľ	<u>^</u>	1	ľ	•	1	1	•	1
Traffic Volume (vph)	76	443	199	167	329	93	243	103	263	166	122	124
Future Volume (vph)	76	443	199	167	329	93	243	103	263	166	122	124
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.538			0.386			0.672			0.685		
Satd. Flow (perm)	1002	3539	1583	719	3539	1583	1252	1863	1583	1276	1863	1583
Satd. Flow (RTOR)			94			88			286			126
Lane Group Flow (vph)	83	482	216	182	358	101	264	112	286	180	133	135
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases	6		6	2		2	4		4	8		8
Total Split (s)	12.0	35.0	35.0	13.0	36.0	36.0	42.0	42.0	42.0	42.0	42.0	42.0
Total Lost Time (s)	4.0	6.3	6.3	4.0	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3
Act Effct Green (s)	25.1	15.1	15.1	28.2	19.0	19.0	18.2	18.2	18.2	18.2	18.2	18.2
Actuated g/C Ratio	0.42	0.26	0.26	0.48	0.32	0.32	0.31	0.31	0.31	0.31	0.31	0.31
v/c Ratio	0.16	0.53	0.45	0.37	0.31	0.18	0.69	0.20	0.42	0.46	0.23	0.24
Control Delay	10.2	22.5	15.5	11.8	18.8	7.3	28.1	16.0	4.3	20.8	16.3	5.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	10.2	22.5	15.5	11.8	18.8	7.3	28.1	16.0	4.3	20.8	16.3	5.0
LOS	В	С	В	В	В	А	С	В	А	С	В	Α
Approach Delay		19.2			15.0			15.8			14.7	
Approach LOS		В			В			В			В	
Queue Length 50th (m)	4.2	24.1	10.9	9.8	16.3	1.0	25.1	8.9	0.0	15.7	10.8	0.7
Queue Length 95th (m)	14.4	47.3	33.8	28.1	34.5	12.2	54.1	21.3	14.3	35.5	24.7	11.1
Internal Link Dist (m)		122.8			242.6			314.2			320.2	
Turn Bay Length (m)	55.0		7.0	50.0		7.0	35.0		7.0	35.0		7.0
Base Capacity (vph)	545	1779	842	511	1841	865	783	1165	1097	797	1165	1036
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.15	0.27	0.26	0.36	0.19	0.12	0.34	0.10	0.26	0.23	0.11	0.13

Intersection Summary

Cycle Length: 90 Actuated Cycle Length: 59.1 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.69 Intersection Signal Delay: 16.5 Intersection Capacity Utilization 60.5% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service B

Splits and Phases: 1: Regency Park Drive/Parkland Drive & Lacewood Drive

▶ _{Ø1}		₹ø2	1 04	
12 s	3	6 s	42 s	
√ Ø5		4 ₀₆	↓ Ø8	
13 s		35 s	42 s	

Appendix C - Intersection Performance Analysis 2: Access #3/Regency Park Drive & Washmill Lake Drive

	≯	-	\mathbf{r}	4	+	•	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>ک</u>	≜ 1≽		<u> </u>	41 2			\$		۲	f,	
Traffic Volume (vph)	125	403	5	13	620	67	13	40	36	220	15	105
Future Volume (vph)	125	403	5	13	620	67	13	40	36	220	15	105
Satd. Flow (prot)	1770	3532	0	1770	3486	0	0	1748	0	1770	1617	0
Flt Permitted	0.343			0.495				0.947		0.695		
Satd. Flow (perm)	639	3532	0	922	3486	0	0	1667	0	1295	1617	0
Satd. Flow (RTOR)		2			21			39			114	
Lane Group Flow (vph)	136	443	0	14	747	0	0	96	0	239	130	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Total Split (s)	47.0	47.0		47.0	47.0		33.0	33.0		33.0	33.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0			6.0		6.0	6.0	
Act Effct Green (s)	18.8	18.8		18.8	18.8			14.1		14.1	14.1	
Actuated g/C Ratio	0.41	0.41		0.41	0.41			0.31		0.31	0.31	
v/c Ratio	0.52	0.31		0.04	0.52			0.18		0.60	0.23	
Control Delay	19.4	10.0		9.4	11.5			9.6		21.6	5.5	
Queue Delay	0.0	0.0		0.0	0.0			0.0		0.0	0.0	
Total Delay	19.4	10.0		9.4	11.5			9.6		21.6	5.5	
LOS	В	В		А	В			А		С	А	
Approach Delay		12.2			11.5			9.6			15.9	
Approach LOS		В			В			Α			В	
Queue Length 50th (m)	7.2	11.0		0.6	20.1			2.8		13.8	0.8	
Queue Length 95th (m)	27.4	27.0		3.8	46.4			14.6		46.7	11.8	
Internal Link Dist (m)		518.2			383.0			43.2			228.7	
Turn Bay Length (m)	20.0			15.0						25.0		
Base Capacity (vph)	563	3113		812	3075			1069		819	1065	
Starvation Cap Reductn	0	0		0	0			0		0	0	
Spillback Cap Reductn	0	0		0	0			0		0	0	
Storage Cap Reductn	0	0		0	0			0		0	0	
Reduced v/c Ratio	0.24	0.14		0.02	0.24			0.09		0.29	0.12	
Intersection Summary												
Cycle Length: 80 Actuated Cycle Length: 45.8												
Control Type: Semi Act-Unco Maximum v/c Ratio: 0.60	ord											

Maximum v/c Ratio: 0.60 Intersection Signal Delay: 12.5 Intersection Capacity Utilization 60.1% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service B

Splits and Phases: 2: Access #3/Regency Park Drive & Washmill Lake Drive

-A _{Ø2}	₩Ø4	
47 s	33 s	
₹ Ø6	↑	
47 s	33 s	

	≯	-	\mathbf{r}	1	-	*	1	1	1	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ካካ	††			***	1	٦	र्च	1			
Traffic Volume (vph)	190	532	0	0	654	348	120	Ō	452	0	0	0
Future Volume (vph)	190	532	0	0	654	348	120	0	452	0	0	0
Satd. Flow (prot)	3433	3539	0	0	5085	1583	1681	1681	1583	0	0	0
Flt Permitted	0.950						0.950	0.950				
Satd. Flow (perm)	3433	3539	0	0	5085	1583	1681	1681	1583	0	0	0
Satd. Flow (RTOR)						378			211			
Lane Group Flow (vph)	207	578	0	0	711	378	65	65	491	0	0	0
Turn Type	Prot	NA			NA	Perm	Perm	NA	Perm			
Protected Phases	7	4			8			2				
Permitted Phases						8	2		2			
Total Split (s)	19.0	52.0			33.0	33.0	48.0	48.0	48.0			
Total Lost Time (s)	4.0	6.0			6.0	6.0	6.0	6.0	6.0			
Act Effct Green (s)	36.4	61.6			21.2	21.2	26.4	26.4	26.4			
Actuated g/C Ratio	0.36	0.62			0.21	0.21	0.26	0.26	0.26			
v/c Ratio	0.17	0.27			0.66	0.60	0.15	0.15	0.86			
Control Delay	2.0	1.0			38.9	7.6	25.2	25.2	33.7			
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0	0.0			
Total Delay	2.0	1.0			38.9	7.6	25.2	25.2	33.7			
LOS	А	А			D	Α	С	С	С			
Approach Delay		1.2			28.0			31.9				
Approach LOS		А			С			С				
Queue Length 50th (m)	0.0	0.0			49.1	0.0	10.7	10.7	57.1			
Queue Length 95th (m)	0.0	0.0			58.4	22.6	18.3	18.3	83.3			
Internal Link Dist (m)		118.1			149.0			197.6			197.9	
Turn Bay Length (m)						60.0			60.0			
Base Capacity (vph)	1251	2180			1372	703	706	706	787			
Starvation Cap Reductn	0	0			0	0	0	0	0			
Spillback Cap Reductn	0	0			0	0	0	0	0			
Storage Cap Reductn	0	0			0	0	0	0	0			
Reduced v/c Ratio	0.17	0.27			0.52	0.54	0.09	0.09	0.62			

Intersection Summary

Cycle Length: 100 Actuated Cycle Length: 100 Offset: 94 (94%), Referenced to phase 4:EBT and 7:EBL, Start of Green Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.86 Intersection Signal Delay: 20.6 Intersection Capacity Utilization 52.7% Analysis Period (min) 15

Intersection LOS: C ICU Level of Service A

Splits and Phases: 4: Hwy 102 NB Ramps & Lacewood Drive

√1 ø2	₩ Ø4 (R)
48 s	52 s
	∮ Ø7 (R) Ø8
	19 s 33 s

Appendix C - Intersection Performance Analysis 5: Lacewood Drive & Hwy 102 SB Ramps

	٦	→	\mathbf{r}	<	-	•	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	1	ľ	^					۲ ۲	ب ا ا	1
Traffic Volume (vph)	0	416	65	257	512	0	0	0	0	321	Ō	510
Future Volume (vph)	0	416	65	257	512	0	0	0	0	321	0	510
Satd. Flow (prot)	0	6408	1583	1770	3539	0	0	0	0	1681	1681	1583
Flt Permitted				0.950						0.950	0.950	
Satd. Flow (perm)	0	6408	1583	1770	3539	0	0	0	0	1681	1681	1583
Satd. Flow (RTOR)			76									554
Lane Group Flow (vph)	0	452	71	279	557	0	0	0	0	174	175	554
Turn Type		NA	Perm	Prot	NA					Perm	NA	Free
Protected Phases		4		3	8						6	
Permitted Phases			4							6		Free
Total Split (s)		24.0	24.0	29.0	53.0					47.0	47.0	
Total Lost Time (s)		6.0	6.0	4.0	6.0					6.0	6.0	
Act Effct Green (s)		12.5	12.5	55.6	72.1					15.9	15.9	100.0
Actuated g/C Ratio		0.12	0.12	0.56	0.72					0.16	0.16	1.00
v/c Ratio		0.57	0.27	0.28	0.22					0.65	0.66	0.35
Control Delay		43.8	11.1	1.9	0.4					50.2	50.4	0.6
Queue Delay		0.0	0.0	0.0	0.0					0.0	0.0	0.0
Total Delay		43.8	11.1	1.9	0.4					50.2	50.4	0.6
LOS		D	В	А	А					D	D	Α
Approach Delay		39.4			0.9						19.8	
Approach LOS		D			Α						В	
Queue Length 50th (m)		25.6	0.0	3.8	0.0					35.4	35.6	0.0
Queue Length 95th (m)		33.2	11.4	0.0	0.8					54.9	55.2	0.0
Internal Link Dist (m)		108.2			118.1			188.6			191.5	
Turn Bay Length (m)			70.0									90.0
Base Capacity (vph)		1153	347	983	2550					689	689	1583
Starvation Cap Reductn		0	0	0	0					0	0	0
Spillback Cap Reductn		0	0	0	0					0	0	0
Storage Cap Reductn		0	0	0	0					0	0	0
Reduced v/c Ratio		0.39	0.20	0.28	0.22					0.25	0.25	0.35
Intersection Summary												
Cycle Length: 100												

Actuated Cycle Length: 100 Offset: 48 (48%), Referenced to phase 3:WBL and 8:WBT, Start of Green Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.66 Intersection Signal Delay: 17.3 Intersection Capacity Utilization 52.7% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service A

Splits and Phases: 5: Lacewood Drive & Hwy 102 SB Ramps

	🖉 🖌 Ø3 (R)	₩04	
	29 s	24 s	
	←		
♥ Ø6	Ø8 (R)		
47 s	53 s		

	≯	\rightarrow	1	†	Ŧ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	1	1	1	^	<u></u>	1
Traffic Volume (vph)	140	457	417	755	580	127
Future Volume (vph)	140	457	417	755	580	127
Satd. Flow (prot)	1770	1583	1770	3539	3539	1583
Flt Permitted	0.950		0.237			
Satd. Flow (perm)	1770	1583	441	3539	3539	1583
Satd. Flow (RTOR)		497				66
Lane Group Flow (vph)	152	497	453	821	630	138
Turn Type	Perm	Perm	pm+pt	NA	NA	Perm
Protected Phases			5	2	6	
Permitted Phases	4	4	2	_	-	6
Total Split (s)	28.0	28.0	31.0	62.0	31.0	31.0
Total Lost Time (s)	6.0	6.0	4.0	6.0	6.0	6.0
Act Effct Green (s)	11.6	11.6	44.3	42.2	16.9	16.9
Actuated g/C Ratio	0 17	0 17	0.67	0.63	0.25	0.25
v/c Ratio	0.49	0.72	0.63	0.37	0.20	0.20
Control Delay	33.0	9.8	12.4	6.5	28.4	15 1
Queue Delay	0.0	0.0	0.0	0.0	20.4	0.0
Total Delay	33.0	0.0 9.8	12.4	6.5	28.4	15.1
	00.0	Δ	12.4 R	Δ	20.4	10.1 R
Approach Delay	153	Л	D	86	26.0	D
Approach LOS	10.0 B			0.0	20.0	
Ouque Length 50th (m)	19.3	0.0	20.0	21 0	38.8	73
Queue Length 30th (m)	10.5	26.8	20.9	Z1.0	70.1	24.4
Internal Link Dist (m)	28/ 0	20.0	00.2	768 J	107 /	24.4
Turn Poyl ongth (m)	504.9		120.0	200.2	197.4	15.0
Page Capacity (vph)	617	075	120.0	2001	1400	15.0
Base Capacity (Vpri)	017	0/5	002	2901	1402	007
Starvation Cap Reductin	0	0	0	0	0	0
Spiliback Cap Reductin	0	0	0	0	0	0
Storage Cap Reductin	0	0	0	0	0	0
Reduced V/c Ratio	0.25	0.57	0.53	0.28	0.45	0.21
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 66.5						
Control Type: Actuated-Unco	ordinated					
Maximum v/c Ratio: 0.72						
Intersection Signal Delay: 15	.2			In	tersectior	n LOS: B

Intersection Capacity Utilization 60.2% Analysis Period (min) 15 Intersection LOS: B ICU Level of Service B

Splits and Phases: 6: Dunbrack Street & Washmill Lake Drive

Appendix C - Intersection Performance Analysis 7: Dunbrack Street & 102 NB Ramps

	۶	-	\mathbf{r}	1	-	•	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Traffic Volume (vph) Future Volume (vph) Sate Elow (prot)	0 0	0 0	0 0	110 110 0	4 0 0 1770	205 205 1583	0 0	↑↑ 972 972 3539	400 400 1583	0 0	↑↑ 699 699 3539	323 323 1583
Fit Permitted Satd. Flow (perm)	0	0	0	0	0.950 1770	1583	0	3539	1583	0	3539	1583
Lane Group Flow (vph) Turn Type Protected Phases	0	0	0	0 Perm	120 NA 8	223 223 Free	0	1057 NA 2	435 435 Perm	0	760 NA 6	351 Free
Permitted Phases Total Split (s) Total Lost Time (s)				8 31.0	31.0 6.0	Free		69.0 6.0	2 69.0 6.0		69.0 6.0	Free
Act Effct Green (s) Actuated g/C Ratio v/c Ratio					9.2 0.19 0.36	49.3 1.00 0.14		33.0 0.67 0.45	33.0 0.67 0.36		33.0 0.67 0.32	49.3 1.00 0.22
Control Delay Queue Delay Total Delay					22.1 0.0 22.1	0.2 0.0 0.2		6.7 0.0 6.7	1.7 0.0 1.7		5.8 0.0 5.8	0.3 0.0 0.3
LOS Approach Delay Approach LOS					C 7.9 A	A		A 5.3 A	A		A 4.1 A	A
Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m)		132.3			10.4 23.0 115.3	0.0 0.0		26.6 45.9 212.7	0.0 9.6		17.1 30.2 106.8	0.0 0.0
Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn					923 0	50.0 1583 0		3539 0	50.0 1583 0		3539 0	15.0 1583 0
Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					0 0 0.13	0 0 0.14		0 0 0.30	0 0 0.27		0 0 0.21	0 0 0.22
Intersection Summary Cycle Length: 100 Actuated Cycle Length: 49.3 Control Type: Actuated-Uncoord Maximum v/c Ratio: 0.45 Intersection Signal Delay: 5.1 Intersection Capacity Utilization Analysis Period (min) 15	inated 43.0%			lr IC	ntersection CU Level o	n LOS: A of Service	A					

Splits and Phases: 7: Dunbrack Street & 102 NB Ramps

Appendix C - Intersection Performance Analysis 8: Dunbrack Street & 102 SB Ramps

	٦	-	\mathbf{r}	4	+	•	1	Ť	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ŧ	1					^	1		<u></u>	1
Traffic Volume (vph)	400	40	800	0	0	0	0	972	515	0	386	88
Future Volume (vph)	400	40	800	0	0	0	0	972	515	0	386	88
Satd. Flow (prot)	0	1781	1583	0	0	0	0	3539	1583	0	3539	1583
Flt Permitted		0.956										
Satd. Flow (perm)	0	1781	1583	0	0	0	0	3539	1583	0	3539	1583
Satd. Flow (RTOR)			684						427			98
Lane Group Flow (vph)	0	478	870	0	0	0	0	1057	560	0	420	96
Turn Type	Perm	NA	Free					NA	Perm		NA	Free
Protected Phases		4						2			6	
Permitted Phases	4		Free						2			Free
Total Split (s)	45.0	45.0						55.0	55.0		55.0	
Total Lost Time (s)		6.0						6.0	6.0		6.0	
Act Effct Green (s)		24.1	67.6					30.5	30.5		30.5	67.6
Actuated g/C Ratio		0.36	1.00					0.45	0.45		0.45	1.00
v/c Ratio		0.75	0.55					0.66	0.59		0.26	0.06
Control Delay		28.7	1.4					17.4	6.6		12.6	0.1
Queue Delay		0.0	0.0					0.0	0.0		0.0	0.0
Total Delay		28.7	1.4					17.4	6.6		12.6	0.1
LOS		С	Α					В	Α		В	Α
Approach Delay		11.1						13.6			10.3	
Approach LOS		В						В			В	
Queue Length 50th (m)		52.0	0.0					51.7	9.5		16.3	0.0
Queue Length 95th (m)		113.3	0.0					100.9	42.6		35.2	0.0
Internal Link Dist (m)		147.9			159.2			130.1			212.7	
Turn Bay Length (m)									40.0			55.0
Base Capacity (vph)		1108	1583					2685	1304		2685	1583
Starvation Cap Reductn		0	0					0	0		0	0
Spillback Cap Reductn		0	0					0	0		0	0
Storage Cap Reductn		0	0					0	0		0	0
Reduced v/c Ratio		0.43	0.55					0.39	0.43		0.16	0.06
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 67.6	5											
Control Type: Actuated-Unc	coordinated											
Maximum v/c Ratio: 0.75												

Maximum v/c Ratio: 0.75 Intersection Signal Delay: 12.1 Intersection Capacity Utilization 66.1% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service C

Splits and Phases: 8: Dunbrack Street & 102 SB Ramps

	٠	-	7	1	-	*	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control	* 65 65	0 0 Stop	64 64	* 94 94	0 0 Stop	95 95	* 29 29	165 165 Free 0%	39 39	* 66 66	181 181 Free 0%	48 48
Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage	0.92 71	0.92	0.92 70	0.92 102	0.92	0.92 103	0.92 32	0.92 179	0.92 42	0.92 72	0.92 197	0.92 52
Right turn flare (veh) Median type Median storage veh) Upstream signal (m)								None 253			None	
pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	713	652	223	675	657	200	249			221		
vCu, unblocked vol tC, single (s)	713 7.1	652 6.5	223 6.2	675 7.1	657 6.5	200 6.2	249 4.1			221 4.1		
tF (s) p0 queue free % cM capacity (veh/h)	3.5 75 287	4.0 100 358	3.3 91 817	3.5 68 317	4.0 100 355	3.3 88 841	2.2 98 1317			2.2 95 1348		
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	NB 2	SB 1	SB 2				
Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (m) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS Intersection Summary	71 71 0 287 0.25 7.6 21.7 C 15.8 C	70 0 70 817 0.09 2.2 9.8 A	102 102 0 317 0.32 10.9 21.7 C 15.8 C	103 0 103 841 0.12 3.3 9.9 A	32 32 0 1317 0.02 0.6 7.8 A 1.0	221 0 42 1700 0.13 0.0 0.0	72 72 0 1348 0.05 1.4 7.8 A 1.8	249 0 52 1700 0.15 0.0 0.0				
Average Delay Intersection Capacity Utiliza Analysis Period (min)	ition		6.8 37.7% 15	IC	CU Level o	of Service			A			

Appendix C - Intersection Performance Analysis 1: Regency Park Drive/Parkland Drive & Lacewood Drive

Page C - 39 2039 PM with Site Trips

	٦	-	\mathbf{F}	4	+	*	1	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	††	1	٦	<u></u>	1	٦	•	1	۲.	•	1
Traffic Volume (vph)	244	592	332	336	539	147	288	194	241	133	161	140
Future Volume (vph)	244	592	332	336	539	147	288	194	241	133	161	140
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.412			0.233			0.647			0.612		
Satd. Flow (perm)	767	3539	1583	434	3539	1583	1205	1863	1583	1140	1863	1583
Satd. Flow (RTOR)			114			88			141			99
Lane Group Flow (vph)	265	643	361	365	586	160	313	211	262	145	175	152
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases	6		6	2		2	4		4	8		8
Total Split (s)	17.0	33.0	33.0	20.0	36.0	36.0	37.0	37.0	37.0	37.0	37.0	37.0
Total Lost Time (s)	4.0	6.3	6.3	4.0	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3
Act Effct Green (s)	33.8	20.2	20.2	40.8	23.8	23.8	24.3	24.3	24.3	24.3	24.3	24.3
Actuated g/C Ratio	0.44	0.26	0.26	0.53	0.31	0.31	0.32	0.32	0.32	0.32	0.32	0.32
v/c Ratio	0.55	0.69	0.72	0.75	0.53	0.29	0.82	0.36	0.44	0.40	0.30	0.27
Control Delay	15.4	30.3	27.2	23.3	24.6	12.3	43.9	22.9	12.7	25.4	22.1	9.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	15.4	30.3	27.2	23.3	24.6	12.3	43.9	22.9	12.7	25.4	22.1	9.9
LOS	В	С	С	С	С	В	D	С	В	С	С	А
Approach Delay		26.3			22.4			27.9			19.2	
Approach LOS		С			С			С			В	
Queue Length 50th (m)	22.3	50.0	36.8	32.8	41.7	8.5	45.5	25.6	14.1	17.9	20.8	5.9
Queue Length 95th (m)	39.1	71.0	70.3	#74.1	60.8	23.9	#92.4	46.8	36.1	36.6	39.4	20.1
Internal Link Dist (m)		122.8			242.6			314.2			320.2	
Turn Bay Length (m)	55.0		7.0	50.0		7.0	35.0		7.0	35.0		7.0
Base Capacity (vph)	538	1283	646	523	1427	691	502	776	742	475	776	717
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.49	0.50	0.56	0.70	0.41	0.23	0.62	0.27	0.35	0.31	0.23	0.21

Intersection Summary

Cycle Length: 90 Actuated Cycle Length: 76.5 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.82 Intersection Signal Delay: 24.5 Intersection Capacity Utilization 78.5% Analysis Period (min) 15

Intersection LOS: C ICU Level of Service D

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 1: Regency Park Drive/Parkland Drive & Lacewood Drive

▶ _{Ø1}	4	Ø2	₩ø4	
17 s	36 s		37 s	
√ Ø5		406	↓ Ø8	
20 s		33 s	37 s	

Synchro 11 Report February 2025 Appendix C - Intersection Performance Analysis 2: Access #3/Regency Park Drive & Washmill Lake Drive

	٦	-	\mathbf{F}	4	-	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	≜ 1≽		۲	≜1 ≽			\$		۲	ţ,	
Traffic Volume (vph)	244	918	12	33	824	145	7	22	20	238	37	137
Future Volume (vph)	244	918	12	33	824	145	7	22	20	238	37	137
Satd. Flow (prot)	1770	3532	0	1770	3461	0	0	1748	0	1770	1643	0
Flt Permitted	0.113			0.283				0.950		0.722		
Satd. Flow (perm)	210	3532	0	527	3461	0	0	1672	0	1345	1643	0
Satd. Flow (RTOR)		2			24			22			149	
Lane Group Flow (vph)	265	1011	0	36	1054	0	0	54	0	259	189	0
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8			4		
Total Split (s)	21.0	67.0		46.0	46.0		33.0	33.0		33.0	33.0	
Total Lost Time (s)	4.5	6.0		6.0	6.0			6.0		6.0	6.0	
Act Effct Green (s)	51.4	49.9		30.6	30.6			20.5		20.5	20.5	
Actuated g/C Ratio	0.62	0.60		0.37	0.37			0.25		0.25	0.25	
v/c Ratio	0.66	0.48		0.19	0.82			0.13		0.78	0.37	
Control Delay	24.4	10.4		22.2	29.5			18.8		48.3	10.4	
Queue Delay	0.0	0.0		0.0	0.0			0.0		0.0	0.0	
Total Delay	24.4	10.4		22.2	29.5			18.8		48.3	10.4	
LOS	С	В		С	С			В		D	В	
Approach Delay		13.3			29.2			18.8			32.3	
Approach LOS		В			С			В			С	
Queue Length 50th (m)	23.6	46.0		4.2	84.3			4.3		41.8	5.3	
Queue Length 95th (m)	56.8	69.4		12.3	119.0			14.5		#83.0	23.7	
Internal Link Dist (m)		518.2			383.0			43.2			228.7	
Turn Bay Length (m)	20.0			15.0						25.0		
Base Capacity (vph)	455	2665		265	1759			584		458	658	
Starvation Cap Reductn	0	0		0	0			0		0	0	
Spillback Cap Reductn	0	0		0	0			0		0	0	
Storage Cap Reductn	0	0		0	0			0		0	0	
Reduced v/c Ratio	0.58	0.38		0.14	0.60			0.09		0.57	0.29	
Intersection Summary												
Cycle Length: 100	-											
Actuated Cycle Length: 82.	9											
Control Type: Semi Act-Uno	coord											

Maximum v/c Ratio: 0.82

Intersection Signal Delay: 22.4 Intersection Capacity Utilization 74.5%

Analysis Period (min) 15

Intersection LOS: C ICU Level of Service D

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 2: Access #3/Regency Park Drive & Washmill Lake Drive

Synchro 11 Report February 2025

	٦	-	$\mathbf{\hat{z}}$	4	+	×	1	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^			^	1	٦	र्च	1			
Traffic Volume (vph)	790	951	0	0	965	407	305	5	536	0	0	0
Future Volume (vph)	790	951	0	0	965	407	305	5	536	0	0	0
Satd. Flow (prot)	3433	3539	0	0	5085	1583	1681	1688	1583	0	0	0
Flt Permitted	0.950						0.950	0.954				
Satd. Flow (perm)	3433	3539	0	0	5085	1583	1681	1688	1583	0	0	0
Satd. Flow (RTOR)						391			97			
Lane Group Flow (vph)	859	1034	0	0	1049	442	169	168	583	0	0	0
Turn Type	Prot	NA			NA	Perm	Perm	NA	Perm			
Protected Phases	7	4			8			2				
Permitted Phases						8	2		2			
Total Split (s)	38.0	74.0			36.0	36.0	46.0	46.0	46.0			
Total Lost Time (s)	4.0	6.0			6.0	6.0	6.0	6.0	6.0			
Act Effct Green (s)	34.3	67.7			29.4	29.4	40.3	40.3	40.3			
Actuated g/C Ratio	0.29	0.56			0.24	0.24	0.34	0.34	0.34			
v/c Ratio	0.88	0.52			0.84	0.65	0.30	0.30	0.98			
Control Delay	23.2	8.3			50.3	11.0	31.4	31.3	65.5			
Queue Delay	5.3	0.9			0.4	0.0	0.0	0.0	0.0			
Total Delay	28.6	9.2			50.7	11.0	31.4	31.3	65.5			
LOS	С	Α			D	В	С	С	E			
Approach Delay		18.0			38.9			53.0				
Approach LOS		В			D			D				
Queue Length 50th (m)	118.1	90.2			90.4	9.9	32.5	32.3	124.4			
Queue Length 95th (m)	#139.7	0.0			108.3	43.4	52.5	52.4	#203.0			
Internal Link Dist (m)		118.1			149.0			197.6			197.9	
Turn Bay Length (m)						60.0			60.0			
Base Capacity (vph)	987	2005			1277	690	564	567	596			
Starvation Cap Reductn	87	629			0	0	0	0	0			
Spillback Cap Reductn	0	0			35	0	1	1	0			
Storage Cap Reductn	0	0			0	0	0	0	0			
Reduced v/c Ratio	0.95	0.75			0.84	0.64	0.30	0.30	0.98			
Internetien Commencer												

Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 61 (51%), Referenced to phase 4:EBT and 7:EBL, Start of Green

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.98

Intersection Signal Delay: 32.7 Intersection Capacity Utilization 69.7%

Analysis Period (min) 15

Intersection LOS: C ICU Level of Service C

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases:	4: Hwy 102 NB Ramps & Lacewood Drive
--------------------	--------------------------------------

Appendix C - Intersection Performance Analysis 5: Lacewood Drive & Hwy 102 SB Ramps

	۶	-	\rightarrow	•	←	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	1	ሻ	*					ሻ	र्च	1
Traffic Volume (vph)	0	1409	300	383	887	0	0	0	0	332	Ō	530
Future Volume (vph)	0	1409	300	383	887	0	0	0	0	332	0	530
Satd. Flow (prot)	0	6408	1583	1770	3539	0	0	0	0	1681	1681	1583
Flt Permitted				0.950						0.950	0.950	
Satd. Flow (perm)	0	6408	1583	1770	3539	0	0	0	0	1681	1681	1583
Satd. Flow (RTOR)			310									378
Lane Group Flow (vph)	0	1532	326	416	964	0	0	0	0	180	181	576
Turn Type		NA	Perm	Prot	NA					Perm	NA	Free
Protected Phases		4		3	8						6	
Permitted Phases			4							6		Free
Total Split (s)		43.0	43.0	49.0	92.0					28.0	28.0	
Total Lost Time (s)		6.0	6.0	4.0	6.0					6.0	6.0	
Act Effct Green (s)		37.6	37.6	48.9	90.4					17.6	17.6	120.0
Actuated g/C Ratio		0.31	0.31	0.41	0.75					0.15	0.15	1.00
v/c Ratio		0.76	0.46	0.58	0.36					0.73	0.74	0.36
Control Delay		39.9	6.2	8.0	2.4					66.0	66.3	0.6
Queue Delay		0.2	0.0	1.6	0.4					0.0	0.0	0.0
Total Delay		40.1	6.2	9.6	2.7					66.0	66.3	0.6
LOS		D	Α	А	Α					E	E	Α
Approach Delay		34.2			4.8						25.9	
Approach LOS		С			Α						С	
Queue Length 50th (m)		97.1	2.7	11.4	0.0					45.2	45.4	0.0
Queue Length 95th (m)		111.8	24.3	m134.9	100.3					69.5	69.8	0.0
Internal Link Dist (m)		108.2			118.1			188.6			191.5	
Turn Bay Length (m)			70.0									90.0
Base Capacity (vph)		2070	721	736	2667					308	308	1583
Starvation Cap Reductn		0	0	166	1027					0	0	0
Spillback Cap Reductn		109	0	0	0					0	0	0
Storage Cap Reductn		0	0	0	0					0	0	0
Reduced v/c Ratio		0.78	0.45	0.73	0.59					0.58	0.59	0.36
Intersection Summary												

Intersection Summar

Cycle Length: 120 Actuated Cycle Length: 120 Offset: 0 (0%), Referenced to phase 3:WBL and 8:WBT, Start of Green Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.76 Intersection Signal Delay: 22.6 Intersection Capacity Utilization 69.7% Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 5: Lacewood Drive & Hwy 102 SB Ramps

Synchro 11 Report February 2025

	۶	\mathbf{r}	1	1	Ļ	∢_	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	ľ	1	ľ	<u></u>	<u></u>	1	
Traffic Volume (vph)	181	651	612	785	830	217	
Future Volume (vph)	181	651	612	785	830	217	
Satd. Flow (prot)	1770	1583	1770	3539	3539	1583	
Flt Permitted	0.950		0.109				
Satd. Flow (perm)	1770	1583	203	3539	3539	1583	
Satd. Flow (RTOR)		564				63	
Lane Group Flow (vph)	197	708	665	853	902	236	
Turn Type	Perm	Perm	pm+pt	NA	NA	Perm	
Protected Phases			5	2	6		
Permitted Phases	4	4	2			6	
Total Split (s)	33.0	33.0	43.0	87.0	44.0	44.0	
Total Lost Time (s)	6.0	6.0	4.0	6.0	6.0	6.0	
Act Effct Green (s)	20.7	20.7	78.3	76.3	32.7	32.7	
Actuated g/C Ratio	0.19	0.19	0.72	0.70	0.30	0.30	
v/c Ratio	0.59	0.94	0.93	0.34	0.85	0.46	
Control Delay	48.2	30.3	49.7	7.6	45.2	26.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	48.2	30.3	49.7	7.6	45.2	26.0	
LOS	D	С	D	А	D	С	
Approach Delay	34.2			26.0	41.3		
Approach LOS	С			С	D		
Queue Length 50th (m)	42.0	35.9	~142.7	42.3	106.4	33.0	
Queue Length 95th (m)	67.3	#119.4	#230.2	54.2	133.8	57.8	
Internal Link Dist (m)	384.9			268.2	197.4		
Turn Bay Length (m)			120.0			15.0	
Base Capacity (vph)	444	819	713	2663	1249	599	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.44	0.86	0.93	0.32	0.72	0.39	
Intersection Summary							
Cycle Length: 120							
Actuated Cycle Length: 109.2							
Control Type: Actuated-Uncod	ordinated	ł					
Maximum v/c Ratio: 0.94							
Intersection Signal Delay: 33.0	D			In	itersection	n LOS: C	
Intersection Capacity Utilization	on 80.2%	Ď		IC	CU Level	of Service	D
Analysis Period (min) 15							
~ Volume exceeds capacity	, queue i	s theoreti	cally infini	ite.			
Queue shown is maximum	after tw	o cycles.					
# 95th percentile volume ex	ceeds ca	apacity, q	ueue may	be longe	r.		
Queue shown is maximum	after tw	o cycles.					
Splits and Phases: 6: Dunb	rack Stre	eet & Was	shmill Lak	e Drive			
1 92							A 04

Appendix C - Intersection Performance Analysis 7: Dunbrack Street & 102 NB Ramps

	≯	-	\mathbf{F}	4	←	•	1	Ť	۲	5	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Traffic Volume (vph) Future Volume (vph) Satd. Flow (prot)	0 0 0	0 0 0	0 0 0	245 245 0	4 0 0 1770	* 480 480 1583	0 0 0	↑↑ 947 947 3539	* 420 420 1583	0 0 0	↑↑ 1070 1070 3539	421 421 421 1583
Flt Permitted Satd. Flow (perm) Satd. Flow (RTOR)	0	0	0	0	0.950 1770	1583 493	0	3539	1583 457	0	3539	1583 161
Turn Type Protected Phases Permitted Phases	U	U	U	Perm	200 NA 8	Free	U	NA 2	457 Perm	U	NA 6	400 Perm
Total Split (s) Total Lost Time (s) Act Effct Green (s)				42.0	42.0 6.0 15.0	56.4		58.0 6.0 28.9	58.0 6.0 28.9		58.0 6.0 28.9	58.0 6.0 28.9
Actuated g/C Ratio v/c Ratio Control Delay					0.27 0.57 24.1	1.00 0.33 0.6		0.51 0.57 11.2	0.51 0.44 2.5		0.51 0.64 12.3	0.51 0.52 8.4
Queue Delay Total Delay LOS					0.0 24.1 C	0.0 0.6 A		0.0 11.2 B	0.0 2.5 A		0.0 12.3 B	0.0 8.4 A
Approach Delay Approach LOS Queue Length 50th (m)					8.5 A 23.0 55.4	0.0		8.6 A 34.7 67.0	0.0 12 6		11.2 B 41.4 79.4	16.6 47 5
Internal Link Dist (m) Turn Bay Length (m) Base Capacity (yph)		132.3			115.3 1178	50.0 1583		212.7 3182	50.0 1469		106.8 3182	15.0 1439
Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					0 0 0 0 23	0 0 0 0 33		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0.31		0 0 0 0.37	0 0 0 32
Intersection Summary Cycle Length: 100 Actuated Cycle Length: 56.4 Control Type: Actuated-Uncoord Maximum v/c Ratio: 0.64 Intersection Signal Delay: 9.6 Intersection Capacity Utilization Analysis Period (min) 15	dinated 53.2%			lr IC	tersection	n LOS: A	A	0.02	0.01		0.07	0.52

Splits and Phases: 7: Dunbrack Street & 102 NB Ramps

Appendix C - Intersection Performance Analysis 8: Dunbrack Street & 102 SB Ramps

	۶	-	\mathbf{i}	4	←	•	1	1	1	5	.↓	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	1					† †	1		† †	1
Traffic Volume (vph)	315	Ō	735	0	0	0	0	1057	110	0	1054	86
Future Volume (vph)	315	0	735	0	0	0	0	1057	110	0	1054	86
Satd. Flow (prot)	0	1770	1583	0	0	0	0	3539	1583	0	3539	1583
Flt Permitted		0.950										
Satd. Flow (perm)	0	1770	1583	0	0	0	0	3539	1583	0	3539	1583
Satd. Flow (RTOR)			510						84			98
Lane Group Flow (vph)	0	342	799	0	0	0	0	1149	120	0	1146	93
Turn Type F	Perm	NA	Free					NA	Perm		NA	Free
Protected Phases		4						2			6	
Permitted Phases	4		Free						2			Free
Total Split (s)	45.0	45.0						55.0	55.0		55.0	
Total Lost Time (s)		6.0						6.0	6.0		6.0	
Act Effct Green (s)		17.8	57.0					26.4	26.4		26.4	57.0
Actuated g/C Ratio		0.31	1.00					0.46	0.46		0.46	1.00
v/c Ratio		0.62	0.50					0.70	0.15		0.70	0.06
Control Delay		23.4	1.2					15.2	4.7		15.2	0.1
Queue Delay		0.0	0.0					0.0	0.0		0.0	0.0
Total Delay		23.4	1.2					15.2	4.7		15.2	0.1
LOS		С	Α					В	А		В	Α
Approach Delay		7.8						14.2			14.0	
Approach LOS		А						В			В	
Queue Length 50th (m)		29.6	0.0					46.0	1.9		45.8	0.0
Queue Length 95th (m)		70.2	0.0					90.5	11.1		89.9	0.0
Internal Link Dist (m)		147.9			159.2			130.1			212.7	
Turn Bay Length (m)									40.0			55.0
Base Capacity (vph)		1290	1583					3025	1365		3025	1583
Starvation Cap Reductn		0	0					0	0		0	0
Spillback Cap Reductn		0	0					0	0		0	0
Storage Cap Reductn		0	0					0	0		0	0
Reduced v/c Ratio		0.27	0.50					0.38	0.09		0.38	0.06
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 57												
Control Type: Actuated-Uncoord	linated											
Maximum v/c Ratio: 0.70												
Intersection Signal Delay: 12.1				In	tersectior	1 LOS: B	_					
Intersection Capacity Utilization Analysis Period (min) 15	56.7%			IC	CU Level o	of Service	В					

Splits and Phases: 8: Dunbrack Street & 102 SB Ramps

	٠	-	7	1	+	*	1	1	1	1	+	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control	* 89 89	0 0 Stop	88 88	120 120	0 0 Stop	122 122	5 65	257 257 Free 0%	90 90	150 150	203 203 Free 0%	108 108
Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage	0.92 97	0.92	0.92 96	0.92 130	0.92	0.92 133	0.92 71	0.92 279	0.92 98	0.92 163	0.92 221	0.92 117
Right turn flare (veh) Median type Median storage veh)								None			None	
vC, stage 2 conf vol	1160	1124	280	1113	1134	328	338	253		377		
vCu, unblocked vol tC, single (s)	1160 7.1	1124 6.5	280 6.2	1113 7.1	1134 6.5	328 6.2	338 4.1			377 4.1		
tF (s) p0 queue free % cM capacity (veh/h)	3.5 19 120	4.0 100 167	3.3 87 759	3.5 6 139	4.0 100 164	3.3 81 713	2.2 94 1221			2.2 86 1181		
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	NB 2	SB 1	SB 2				
Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (m) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	97 97 0 120 0.81 38.0 104.6 F 57.8 F	96 0 96 759 0.13 3.5 10.4 B	130 130 0 139 0.94 51.6 122.1 F 66.0 F	133 0 133 713 0.19 5.4 11.2 B	71 71 0.06 1.5 8.1 A 1.3	377 0 98 1700 0.22 0.0 0.0	163 163 0 1181 0.14 3.8 8.5 A 2.8	338 0 117 1700 0.20 0.0 0.0				
Intersection Summary Average Delay Intersection Capacity Utiliza Analysis Period (min)	ation		21.7 53.1% 15	IC	CU Level o	of Service			A			

Appendix C - Intersection Performance Analysis

4: Hwy 102 NB Ramps & Lacewood Drive Performance by movement

Movement	EBL	EBT	WBT	WBR	NBL	NBT	NBR	All
Denied Del/Veh (s)	0.0	0.0	0.4	1.5	1.1	1.3	3.1	0.8
Total Del/Veh (s)	16.2	7.6	42.7	19.7	44.8	39.0	30.4	25.2

Intersection: 4: Hwy 102 NB Ramps & Lacewood Drive

Movement	EB	EB	EB	EB	WB	WB	WB	WB	B11	B11	NB	NB
Directions Served	L	L	Т	Т	Т	Т	Т	R	Т	Т	L	LT
Maximum Queue (m)	99.9	105.1	75.3	77.7	100.4	89.3	96.4	67.5	0.7	69.2	127.0	176.7
Average Queue (m)	38.1	41.1	26.2	30.1	68.7	57.1	55.7	44.9	0.0	2.0	20.2	83.8
95th Queue (m)	82.2	86.6	62.6	67.2	98.5	85.7	89.0	75.6	0.0	28.9	85.0	148.2
Link Distance (m)	126.0	126.0	126.0	126.0	149.5	149.5	149.5		127.1	127.1	204.9	204.9
Upstream Blk Time (%)		0								0		0
Queuing Penalty (veh)		0								0		0
Storage Bay Dist (m)								60.0				
Storage Blk Time (%)							5	3				7
Queuing Penalty (veh)							18	8				36

Intersection: 4: Hwy 102 NB Ramps & Lacewood Drive

Movement	NB
Directions Served	R
Maximum Queue (m)	67.5
Average Queue (m)	60.0
95th Queue (m)	80.4
Link Distance (m)	
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (m)	60.0
Storage Blk Time (%)	16
Queuing Penalty (veh)	25

Appendix C - Intersection Performance Analysis

3: Regency Park Drive & Internal Road Performance by movement

Movement	EBL	EBR	WBL	WBR	NBL	NBT	NBR	SBL	SBT	SBR	All	
Denied Del/Veh (s)	3.8	0.4	3.7	0.5	0.0	0.0	0.0	2.8	0.6	0.6	1.1	
Total Del/Veh (s)	15.6	5.0	16.5	5.8	4.7	2.5	1.6	4.7	2.5	1.4	5.4	

Intersection: 3: Regency Park Drive & Internal Road

Movement	FB	FB	WB	WB	NB	NB	SB	SB
		TD	110	TD	110	TD	00	TD
Directions Served	L	IR	L	IR	L	IR	L	IR
Maximum Queue (m)	27.8	21.7	27.2	26.1	15.8	6.7	20.3	6.3
Average Queue (m)	12.7	10.4	14.4	12.1	5.1	0.4	8.8	0.1
95th Queue (m)	23.0	17.7	24.9	20.7	13.4	3.2	17.5	1.6
Link Distance (m)		70.0		125.7		228.6		332.9
Upstream Blk Time (%)								
Queuing Penalty (veh)								
Storage Bay Dist (m)	25.0		25.0		25.0		25.0	
Storage Blk Time (%)	1	0	2	0			0	
Queuing Penalty (veh)	1	0	2	0			0	