Appendix 5

Traffic Impact Study

FINAL REPORT

Traffic Impact Study:

Proposed "Windgate Village" Mixed Use Development

Beaver Bank, NS

Presented to: Marque Investments Ltd.

> March 2015 Ref# 141-24579

1 Spectacle Lake Drive Dartmouth, NS B3B 1X7 Tel: 902-835-9955 Fax: 902-835-1645 www.wspgroup.com

Table of Contents

Chapter	Contents	Page
1.0	Introduction	1
2.0	Study Area Descriptions	4
3.0	Trip Generation, Distribution, and Assignment	10
4.0	Intersection Performance Analysis	
	4.1 Traffic Signal Warrant Analysis	
	4.2 Turn Lane Warrant Analysis	
	4.3 Intersection Level of Service Analysis	
5.0	Summary, Recommendations, and Conclusions	17

Appendix A: Intersection Turning Movement Counts Traffic Volume Diagrams Left Turn Lane Warrants Right Turn Lane Warrants Traffic Signal Warrant

Appendix B: Level of Service Analysis

Prepared by: Mike Connors, P.Eng. Greg O'Brien, P.Eng. Ken O'Brien, P.Eng.

WSP Canada Inc. 1 Spectacle Lake Drive Dartmouth, NS B3B 1X7 Phone: 902-835-9955 Fax: 902-835-1645 Email: mike.connors@wspgroup.com

1.0 I ntroductio	n
Background	Plans are being prepared by Marque Investments Ltd. for the development of "Windgate Village", a mixed use residential / commercial subdivision in Beaver Bank, NS. The proposed development is located at PID# 41043597, a large undeveloped parcel located between "Capilano Country Estates" and "Rivendale Estates", two residential subdivisions with frontages along Windgate Drive (See Figure 1).
	The proposed development will include a mix of residential and commercial land uses. The south end of the parcel – located adjacent to Windgate Drive – includes commercial developments and a mix of multi-unit, townhouse, and detached single family residential units. The north end of the parcel, which will be accessed via existing residential streets, will comprise detached single family residential units only. It is anticipated that buildout of the development will be completed by 2025.
	WSP Canada Inc. has been retained to complete a Traffic Impact Study satisfactory to the Halifax Regional Municipality (HRM).
A Traffic Impact Study Usually Considers Four Questions	A Traffic Impact Study usually consists of determining answers for the following questions:
	 What are the existing traffic situations on roads adjacent to the study site? How have traffic volumes increased historically? What traffic changes are expected at Study Area intersections? How many vehicle trips will be generated by the proposed development during weekday peak hours? How will the traffic be distributed at the exits from the development and to Study Area roads and intersections? What traffic impacts w ill occu r on Study Area roads and intersections how will level of service of roads and intersections be affected?
	4. What road o r intersec tion impro vements are requir ed to mitigate project impacts on Study Area traffic movements?
Study Objectives	 The following are the primary objectives of this Study: 1. Develop projected 2025 background weekday AM and PM peak hourly volumes for Study Area roads that do not include trips generated by proposed site development.
	 Estimate the number of weekday AM and PM peak hour trips that

- will be generated by the proposed development. 3. Distribute and assign site generated trips to Study Area
- intersections. 4. Add site generated trips to projected 2025 background peak hourly volumes to provide projected volumes that include site generated trips.
- 5. Evaluate impacts of site generated traffic on the performance and level of service of study intersections.
- 6. Complete traffic signal warrant analyses, as necessary, for intersections in the vicinity of the proposed development.

- 7. Complete left-turn lane warrants, as necessary, for intersections on Windgate Drive that access the proposed development.
- 8. Recommend improvements that may be needed at study intersections to mitigate the impacts of site development.

2.0 Study Area Descriptions

Site Description

Road and

Intersection

Descriptions

The proposed site is an approximately 83 hectare undeveloped parcel located between "Capilano Country Estates" and "Rivendale Estates", two residential subdivisions between Beaver Bank Road and Windsor Junction Road. The south end of the site will be accessed via a new driveway to Windgate Drive and street connections to Rivendale Drive and Capilano Drive. The north end of the site will be accessed via existing local streets including O'Leary Drive and Briancrest Road. A road connection between the north and south portions of the site is not included in the development concept.

Windgate Drive is a 2-lane collector road that runs east-west approximately 4.7km between Beaver Bank Road and Windsor Junction Road. In the vicinity of the Study Area, it has gravel shoulders and open ditches; the posted speed limit is 70km/h. Annual average daily traffic volumes on Windgate Drive just west of Rivendale Drive are approximately 3,600 vehicles per day (vpd).

Photo 1: Looking east on Windgate Drive. The proposed development site is to the left of the photo.

Beaver Bank Roa d is a 2-lane collector road that runs north-south approximately 21km between Lower Sackville and East Uniacke Road. In the vicinity of Windgate Drive, it has curb and gutter with sidewalk on the east side and gravel shoulders and open ditches on the west side. Annual average daily traffic volumes on Beaver Bank Road just north of Windgate Drive are approximately 14,700 vehicles per day (vpd).

The Beaver Bank Road – Windgate Drive intersection is unsignalized, with stop control on Windgate Drive. There is an exclusive left turn lane on the Beaver Bank Road southbound approach; all other approaches are single lane.

Windsor Junction Road is a 2-lane collector road that runs north-south approximately 3.5km between Cobequid Road and Fall River Road. In the vicinity of Windgate Drive it has gravel shoulders and open ditches on both sides. Annual average daily traffic volumes on Windsor Junction Road just south of Windgate Drive are approximately 3,700 vehicles per day (vpd).

Road and Intersection Descriptions (Continued) The Windgate Drive – Windsor Junction Road intersection is unsignalized, with stop control on the Windgate Drive approach. All approaches are single lane. Rivendale Drive and O'Leary Drive are 2-lane paved local residential

streets located west of the proposed development. Rivendale Drive provides access from the south end of the site to Windgate Drive, and O'Leary Drive will provide access (via other local streets) between the north end of the development and Beaver Bank Road. *Capilano Drive, Briancrest Road, Terry Roa d,* and *Tay lor Drive* are 2-lane paved local residential streets located east of the proposed development. *Capilano Drive, B riancrest Road, and Terry Road* will connect the development south to Windgate Drive, while *Taylor Drive* provides a connection northeast toward Fall River. Each street has a posted speed limit of 50km/h.

Public Transportation Halifax Transit operates Route #400 (formerly Beaver Bank Community Transit) on Beaver Bank Road between Beaver Bank Villa and the Sackville Terminal, where it provides connection to additional routes including the Metrolink service. The route has stops just north of Windgate Drive.

Proposed Site
Access
(South End of
Development)The south end of the site will be accessed via new street connections to
Windgate Drive, Rivendale Drive, and Capilano Drive. The proposed
connection to Windgate Drive is located approximately 200m west of
Terry Road (See Photo 2 and Photo 3).

Stopping sight distances (SSD) – measured from a driver eye height of 1.05 m to a 150 mm object – were observed on the Windgate Drive eastbound and westbound approaches to a location in the vicinity of the proposed access intersection. Observations indicated SSD greater than 150 meters on the eastbound approach, which exceeds the minimum 134m required for an assumed operating speed of 80km/h on a +1% approach grade. On the westbound approach, observations indicated SSD of approximately 96m, which is less than the recommended minimum of 128m for 80km/h operating speed on a +4% approach grade. Further investigation should be completed to determine a final location, and to determine whether modifications to the existing road profile are necessary to improve sight distance.

Photo 2: Looking east (to the left) on Windgate Drive from the proposed site access Intersection.

Photo 3: Looking west (to the right) on Windgate Drive from the proposed site access Intersection

Connections to Rivendale Drive and Capilano Drive will also provide access to the south end of the development. Sight distance (See Photo 4 to Photo 7) on the approaches at both intersections appears adequate.

Photo 4: Looking south (to the left) on Rivendale Drive from the proposed site access Intersection.

Photo 5: Looking north (to the right) on Rivendale Drive from the proposed site access Intersection

Photo 6: Looking north (to the left) on Capilano Drive from the proposed site access Intersection.

Photo 7: Looking south (to the right) on Capilano Drive from the proposed site access Intersection

Proposed Site Access (North End of Development) The north end of the site will be accessed via connections to O'Leary Drive and Briancrest Road. O'Leary Drive (Photo 8) will be extended from its existing terminus across the development to connect to Briancrest Road. The proposed O'Leary Drive – Briancrest Road intersection (Photo 9 and Photo 10) will be located approximately 75m north of Vickilynn Lane. Sight distance on both approaches appears adequate.

Photo 8: Looking west on O'Leary Drive from the proposed site access connection.

Photo 9: Looking north (to the right) on Rivendale Drive from the proposed site access Intersection

Photo 10: Looking north (to the left) on Capilano Drive from the proposed site access Intersection.

Traffic Volume Data HRM Traffic & Right-of-Way Services (TROW) obtained a machine traffic count on Windgate Drive between Beaver Bank Road and Rivendale Drive (just west of the proposed development) during October 2013. Counts indicate Windgate Drive two-way AM and PM peak hour volumes of about 220 and 256 vehicles per hour, respectively. The graphical representation of average weekday hourly volumes during a 24 hour day (Figure 2) illustrates the pronounced 'peaks' of AM and PM peak hour volumes typical of a road with commuter traffic.

Figure 2: Average Weekday Hourly Volumes – October 2013: Windgate Drive (Beaver Bank Road to Rivendale Drive)

- Annual Volume Trends Historical volume data obtained by HRM between 2011 and 2013 on Windgate Drive (just west of the proposed development) do not indicate a consistent growth trend in volumes. Volumes are in the range of 3,600 vehicles per day. An annual growth rate of 1.0% typical of growth in the Halifax region has been used for the projecting future year traffic volumes for this study.
- Manual Traffic Count Manual traffic counts were obtained during AM and PM peak periods between Wednesday, March 4 and Friday, March 6, 2015 at Windgate Drive intersections at Rivendale Drive and Windsor Junction Road. A count completed by HRM on Friday, August 10, 2012 at the Windgate Drive Beaver Bank Road intersection was also obtained from HRM TROW. Turning movement counts are tabulated in Tables A-1 to A-3, Appendix A, with peak hour volumes indicated by shaded areas.
- **Redistribution of Background Volumes** The proposed street connections across the development will provide alternate routing options for existing residents of the area. In some cases, the new east-west connections will shorten the distance required to make certain trips. Overall, it is expected that the potential impact on existing streets and intersections will be minimal, as volumes are relatively low and will likely balance out. Background projections for this Study have incorporated redistribution of volumes based on the presence of the proposed street connections.
- **Projected 2015 and 2025 Background Volumes** Projected 2025 weekday AM and PM peak hour background volumes, calculated using an annual traffic volume growth rate of 1.0%, are illustrated diagrammatically in Figure A-1 (Boxes A and B), Appendix A.

3.0 Trip Generation, Distribution, and Assignment

Description of
ProposedThe
and
adiaDevelopmentadia

The proposed residential development will include a mix of residential and commercial land uses. The south end of the parcel – located adjacent to Windgate Drive – includes commercial developments, a mix of multi-unit and single family residential units, and a sports field / community park. The north end of the parcel, which will be accessed via existing residential streets, will comprise single family residential units only. Proposed land uses are summarized in Table 3-1.

Development Area	Access	Proposed Land Uses
1	Windgate Drive Rivendale Drive Capilano Drive	Residential: - 46 Detached Single Family Units - 44 Townhouse Units - 120 Apartment Units Commercial: - 60,000 SF Specialty Retail
2	O'Leary Drive Briancrest Road	Residential: - 55 Detached Single Family Units

Table 3-1: Summary of Proposed Developments

The proposed commercial parcel includes approximately 11.5 acres of developable land. The Beaver Bank, Hammonds Plains and Upper Sackville LUB for a C-4 (Highway Commercial Zone) includes the following general limitations for development:

- Minimum lot area 30,000 SF
- Minimum lot frontage 100 feet
- Maximum gross floor area on a lot 10,000 SF

Considering the size and configuration of the commercial parcel, it is estimated that the site will support approximately six lots which will allow construction of up to 60,000 square feet of commercial buildings. Since expected land uses are not known at this time, trip generation estimates have been prepared for a Specialty Retail land use.

Estimation of Total Site Generated Trips The number of trips that will be generated by the proposed development has been estimated using rates published in *Trip Generation, 9th Edition* (Washington, 2012). Trip generation estimates, which are summarized in Table 3-2, indicate that the proposed development is expected to generate approximately 251 two-way vehicle trips (85 vph entering and 166 vph exiting) during the AM peak hour and 381 two-way vehicle trips (211 vph entering and 170 vph exiting) during the PM peak hour.

	Trip Generation Rates ¹			Trips Generated				
Units ²	AM Peak		PM Peak		AM Peak		PM Peak	
	In	Out	In	Out	In	Out	In	Out
Trip Generation Estimates for Area 1 (Southern Portion)								
90	0.19	0.56	0.63	0.37	17	50	57	33
120	0.10	0.41	0.40	0.22	12	49	48	26
60	0.76	0.60	1.19	1.52	46	36	71	91
-	Trip Gene	eration Es	timates f	or Area 1	75	135	176	150
p Generat	ion Estim	ates for	Area 2 (N	lorthern F	Portion)			
55	0.19	0.56	0.63	0.37	10	31	35	20
Total Trip Generation Estimates for Proposed Development 85 166 211 170								
 Notes: 1. Trip generation rates are 'vehicles per hour per unit' for Single Family Residential (Land Use Code 210), published in <i>Trip Generation, 9th Edition</i>, Institute of Transportation Engineers, 2012. 2. Residential units are dw ellings. KGLA is 'Gross Leasable Area x 1000 square feet'. 								
	Units ² o Generat 90 120 60 p Generat 55 neration E: re 'vehicles dition , Institute velings. KCC	Units ² AM F AM F In 90 0.19 120 0.10 60 0.76 Trip Gene 55 0.19 neration Estimates re 'vehicles per hour p dition , Institute of Tra vellings. KGLA is 'Gro	Trip General Trip General AM Peak In Out o Generation Estimates for 90 0.19 0.56 120 0.10 0.41 60 0.76 0.60 Trip Generation Estimates for Output Trip Generation Estimates for Foeneration Estimates for S5 0.19 0.56 Determine Estimates for Foeneration Estimates for Foeneration Estimates for Propore Stimates for Propore Output Output Determine Estimates for Propore Stimates for Propore Stimates for Propore Vehicles per hour per unit for Generation Estimates for Science Lease	Trip Generation Rate Units ² Trip Generation Rate AM Peak PM I In Out In o Generation Estimates for Area 1 (S 90 0.19 0.56 0.63 90 0.19 0.56 0.63 120 0.10 0.41 0.40 60 0.76 0.60 1.19 Trip Generation Estimates for Area 2 (N 55 0.19 0.56 0.63 of Generation Estimates for Area 2 (N 55 0.19 0.56 0.63 neration Estimates for Proposed Development re 'vehicles per hour per unit' for Single Fa dition , Institute of Transportation Engineer Vehicles Colspan="2">Proposed Development vellings. KGLA is 'Gross Leasable Area x Vehicles colspan="2">Colspan="2">Network	Trip Generation Rates1AM PeakPM PeakInOutInOuto Generation Estimates for Area 1 (Southern I900.190.560.630.371200.100.410.400.22600.760.601.191.52Trip Generation Estimates for Area 1p Generation Estimates for Area 2 (Northern I550.190.560.630.37teration Estimates for Area 2 (Northern I550.190.560.630.37neration Estimates for Proposed Developmentre 'vehicles per hour per unit' for Single Family Residedition , Institute of Transportation Engineers, 2012.vellings. KGLA is 'Gross Leasable Area x 1000 square	Trip Generation Rates1Units2Trip Generation Rates1AM PeakPM PeakAM IInOutInOut900.190.560.630.37900.190.560.630.37171200.100.410.400.2212600.760.601.191.5246Trip Generation Estimates for Area 175p Generation Estimates for Area 2 (Northern Portion)550.190.560.630.3710neration Estimates for Proposed Development85re 'vehicles per hour per unit' for Single Family Residential (Landdition , Institute of Transportation Engineers, 2012.vellings. KGLA is 'Gross Leasable Area x 1000 square feet'.	Units²AM PeakAM PeakAM PeakInOutInOutInOut900.190.560.630.3717501200.100.410.400.221249600.760.601.191.524636Trip Generation Estimates for Area 2 (Northern Portion)550.190.560.630.371031Sector For Proposed Development85166re 'vehicles per hour per unit' for Single Family Residential (Land Use Code dition , Institute of Transportation Engineers, 2012.vellings. KGLA is 'Gross Leasable Area x 1000 square feet'.	Trip Generation Rates1Trips GeneratedUnits2AM PeakPM PeakAM PeakPM IAM PeakPM PeakAM PeakPM IInOutInOutInOut900.190.560.630.371750571200.100.410.400.22124948600.760.601.191.52463671Trip Generation Estimates for Area 175135176p Generation Estimates for Area 2 (Northern Portion)550.190.560.630.37103135neration Estimates for Proposed Development85166211re 'vehicles per hour per unit' for Single Family Residential (Land Use Code 210), putdition , Institute of Transportation Engineers, 2012.

Table 3-2 - Trip Generation Estimates for Proposed Development

The Speciality Retail (Land Use 826) rate for 'Peak Hour of Adjacent Street Traffic, One Hour Betw een 4 and 6 PM' has been used. Since there is no published rate for the AM peak hour of adjacent street for this Land Use, and since AM peak hour trips to Speciality Retail are generally low, AM trip rates have been assumed to be 50% of the PM rate with reversal of the directional split.

Trip Distribution and Assignment

Based on review of the local street network and development surrounding the site as well as local knowledge of the area, external trips generated by the proposed development have been distributed as summarized in Table 3-3. Assigned site generated trips at Study Area intersections are shown diagrammatically in Figure A-2 (Boxes A and B), Appendix A.

Development Area	Direction				
1	East – Windgate Drive	45%			
(South)	East – Taylor Drive	10%			
(South)	West – Windgate Drive	45%			
	East – Windgate Drive	35%			
2	East – Taylor Drive	20%			
(North)	West – Windgate Drive	10%			
	West – O'Leary Drive	35%			

Table 3-3: Trip Distribution Summary

Projected 2025 Volumes that Include Site Generated Trips Site generated trips have been added to the projected 2025 background volumes (Figure A-1, Boxes A and B) to provide projected 2025 volumes that include site generated trips which are illustrated diagrammatically in Figure A-3 (Boxes A and B), Appendix A.

4.0 I ntersection Performance Analysis

4.1 Tr affic Signal Warrant Analysis

Traffic Signal Warrant Principles A signal warrant analysis is completed to determine if the installation of traffic signals at an intersection will provide a positive impact on total intersection operation. That is, the benefits in time saved and improved safety that will accrue to vehicles entering from a side street will exceed the impact that signals will have in time lost and potential additional collisions for vehicles approaching the intersection on the main street.

The Canadian Traffic Signal Warrant Matrix Analysis (Transportation Association of Canada (TAC), 2005) considers 100 warrant points as an indication that traffic signals will provide a positive impact. Signal warrant analysis uses vehicular and pedestrian volumes, and intersection, roadway and study area characteristics to calculate a warrant point value.

Traffic Signal Warrant Analysis Signal warrant analyses were completed for Windgate Drive intersections at Beaver Bank Road and Windsor Junction Road for projected 2025 background traffic with the addition of trips generated by the proposed development. Results, which are summarized in Table 4-1, indicate that traffic signals are not expected to be warranted at either intersection both without and with site development.

	Intersection				
Development Scenario	Windgate Drive @ Beaver Bank Road	Windgate Drive @ Windsor Junction Road			
2025 Background <u>without</u> Site Development	63 Points (Signals not warranted) [Table A-4]	(Signals not warranted)			
2025 Background <u>with</u> Site Development	88 Points (Signals not warranted) [Table A-5]	21 Points (Signals not warranted) [Table A-6]			

Table 4-1: TAC Traffic Signal Warrant Points by Development Scenario

4.2 Tu rn Lane Warrant Analysis

Left Turn Lane Warrant Analysis Left turn movements on a two lane street may cause both operational and safety problems. Operational problems result as a vehicle stopped waiting for an opportunity to turn across 'heavy' opposing traffic causes a queue of stopped vehicles to form. Safety problems result from rear end collisions when a stopped left turning vehicle is struck by an advancing vehicle, or from head-on or right angle collisions when a left turning vehicle is struck by an opposing vehicle.

The Geometric Design Standards for Ontario Highways Manual contains nomographs for left turn lane analysis for two lane streets. The analysis method, which is normally used by WSP Atlantic to

evaluate need for left turn lanes, uses a series of nomographs that consider speed, advancing volumes, left turns as a percentage of advancing volumes, and opposing volumes. A point, based on 'opposing' and 'advancing' volumes, plotted to the right of the 'warrant line' of the appropriate '% left turns' and 'approach speed' nomograph, indicates that a left turn lane is warranted for the conditions used in the analysis. Similarly, a point that is plotted to the left of the warrant line indicates that a left turn lane is not warranted.

Analysis of left turn lane warrants was completed (Figure A-4, Appendix A) for eastbound left turns from Windgate Drive into the new site access intersection for projected 2025 volumes with the addition of site generated trips. The analysis indicated that left turn lanes are <u>not</u> expected to be warranted based on weekday AM and PM peak hour traffic volumes.

4.3 Int ersection Level of Service Analysis

Intersection Level of Service Analysis The level or quality of performance of an intersection in terms of traffic movement is determined by a level of service (LOS) analysis. LOS for intersections is defined in terms of delay, which is a measure of driver discomfort and frustration, fuel consumption, and increased travel time.

Level of Service (*LOS*) *Criteria LOS* criteria (Table 4-2) are stated in terms of average control delay per vehicle which includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay.

LOS	LOS Description	Two Way Stop Controlled (TWSC) Intersections Control Delay (Seconds per Vehicle)
А	Very low delay; most vehicles do not stop (Excellent)	Less than 10.0
В	Higher delay, most vehicles stop (Very Good)	Between 10.0 and 15.0
с	Higher level of congestion; number of vehicles stopping is significant, although many still pass through intersection without stopping (Good)	Between 15.0 and 25.0
D	Congestion becomes noticeable; vehicles must sometimes wait through more than one red light; many vehicles stop (Satisfactory)	Between 25.0 and 35.0
E	Vehicles must often wait through more than one red light; considered by many agencies to be the limit of acceptable delay	Between 35.0 and 50.0
F	This level is considered to be unacceptable to most drivers; occurs when arrival flow rates exceed the capacity of the intersection (Unacceptable)	Greater than 50.0

Table 4-2 - Level of Service (LOS) Criteria for Intersections

Intersection Level of Service Analysis Synchro 8.0 software has been used for performance evaluation of Study Area intersections on Beaver Bank Road for 2025 AM and PM peak hour volumes without and with site development.

Level of service (LOS) analysis results are included in Appendix B and are summarized in Tables 4-3 to 4-5.

Summary Level of Service Analysis Windgate Drive @ Beaver Bank Ro ad (Table 4-3) – With the exception of the Windgate Drive westbound approach, overall intersection performance is good. Results indicate that the Windgate Drive approach will experience excessive average delay, V/C ratio, and queue lengths – particularly the PM peak hour – both without and with the addition of site generated trips. It is noted that analysis of unsignalized intersections using Synchro software does have limitations that result in it reporting unreasonably poor levels of performance as a movement approaches capacity. For this reason, it is expected that the results indicated for the PM peak hour (both without and with development) are not representative of actual conditions.

Windgate Drive **@** *Wind sor Junct ion Road* (Table 4-4) – Intersection performance is expected to be satisfactory both without and with the addition of site generated trips. All movements operate within HRM acceptable limits.

Windgate Drive @ Proposed Site Access (Table 4-5) – Intersection performance is expected to be satisfactory; all movements operate within HRM acceptable limits.

LOS Criteria		Delay (sec/vel ueue (m) by In	Overall Intersection				
	WB-LR	NB-TR SB-L SB-T		Delay	LOS		
Weekday AM Peak Hour - Projected 2025 Volumes without Site Development (Page B-1)							
Delay v/c Queue	39.2 0.52 20.2	0.0 0.18 0	8.0 0.04 0.9	0.0 0.49 0	3.6	А	
Weekday Al	M Peak Hour -	Projected 202	5 Volumes wi	th Site Develo	pment (Page	B-5)	
Delay v/c Queue	77.8 0.87 51.7	0.0 0.2 0	8.1 0.05 1.2	0.0 0.49 0	10.7	В	
Weekday P	M Peak Hour -	Projected 202	25 Volumes wi	thout Site Dev	elopment (Pa	age B-3)	
Delay v/c Queue	288.8 1.41 89.7	0.0 0.71 0.0	11.6 0.06 1.4	0.0 0.28 0.0	26.8	D	
Weekday P	Weekday PM Peak Hour - Projected 2025 Volumes with Site Development (Page B-8)						
Delay v/c Queue	747.2 2.45 175.9	0.0 0.76 0	12.5 0.11 2.8	0.0 0.28 0	92.8	F	

Table 4-3 - LOS for Beaver Bank Road @ Windgate Drive

Table 4-4 - LOS for Windsor Junction Road @ Windgate Drive

				inagate ent	ů.			
LOS Criteria	-	(sec/veh), LOS, (m) by Intersecti	Overall Intersection					
	EB-LR	NB-LT	Delay	LOS				
Weekday AM Peak Hour - Projected 2025 Volumes without Site Development (Page B-2)								
Delay	12.1	3.1	0.0					
v/c	0.38	0.03	0.09	7.3	А			
Queue	13.7	0.6	0.0					
Weekday AM	Peak Hour - Proj	ected 2025 Volur	nes with Site De	velopment (F	age B-6)			
Delay	14.1	3.7	0.0		A			
v/c	0.5	0.04	0.11	8.6				
Queue	21.3	0.8	0					
Weekday PM	Peak Hour - Proj	ected 2025 Volu	mes without Site	Developmen	t (Page B-4)			
Delay	13.3	4.6	0.0					
v/c	0.24	0.10	0.10	5.3	А			
Queue	7.0	2.4	0					
Weekday PM	Weekday PM Peak Hour - Projected 2025 Volumes with Site Development (Page B-9)							
Delay	17.8	5.1	0.0					
v/c	0.44	0.12	0.14	7.2	А			
Queue	16.7	3.2	0					

LOS Criteria	-	(sec/veh), LOS, (m) by Intersecti	Overall Intersection					
	EB-LT	Delay	LOS					
Weekday AM Peak Hour - Projected 2025 Volumes with Site Development (Page B-7)								
Delay	1.1	0.0	10.4					
v/c	0.02	0.07	0.13	3.0	A			
Queue	0.5	0.0	3.5					
Weekday PM	Weekday PM Peak Hour - Projected 2025 Volumes with Site Development (Page B-10)							
Delay	2.8	0	12.2					
v/c	0.06	0.15	0.18	3.4	А			
Queue	1.3	0	12.2					

Table 4-5 - LOS for Windgate Drive @ Proposed Site Access Street

5.0 Summary, Recommendations, and Conclusions

- Description of the being prepared by 1. Plans are Marque Investments Ltd. Proposed for the development of "Windgate Village", a mixed use residential / Development commercial subdivision in Beaver Bank, NS. The proposed development will include a mix of residential and commercial land uses. The south end of the parcel – located adjacent to Windgate Drive – includes commercial developments and a mix of multi-unit, townhouse, and detached single family residential units. The north end of the parcel, which will be accessed via existing residential streets, will comprise detached single family residential units only. It is anticipated that buildout of the development will be completed by 2025.
- Proposed Site Access
 2. Separate site accesses will be provided to the north and south ends of the proposed development. The south end of the site will be accessed via new street connections to Windgate Drive, Rivendale Drive, and Capilano Drive. The north end of the site will be accessed via connections to O'Leary Drive and Briancrest Road.
- *Description of Study Windgate Dri ve* is a 2-lane collector road that runs east-west approximately 4.7km between Beaver Bank Road and Windsor Junction Road. In the vicinity of the Study Area, it has gravel shoulders and open ditches; the posted speed limit is 70km/h.

Beaver Bank Road is a 2-lane collector road that runs north-south approximately 21km between Lower Sackville and East Uniacke Road.

Windsor Junction Road is a 2-lane collector road that runs northsouth approximately 3.5km between Cobequid Road and Fall River Road.

Rivendale Dr ive and **O'Leary Dri ve** are 2-lane paved local residential streets located west of the proposed development. Rivendale Drive provides access from the south end of the site to Windgate Drive, and O'Leary Drive will provide access (via other local streets) between the north end of the development and Beaver Bank Road. **Capilano Drive, Briancrest Road, Terry Road,** and **Taylor Drive** are 2-lane paved local residential streets located east of the proposed development. **Capilano Drive, Briancrest Road, Terry Road,** and **Taylor Drive** are 2-lane paved local residential streets located east of the proposed development. **Capilano Drive, Briancrest Road, and Terry Road** will connect the development south to Windgate Drive, while **Taylor Drive** provides a connection northeast toward Fall River.

Background Traffic Volumes4. Projected 2025 weekday AM and PM peak hour background volumes were calculated using an annual traffic volume growth rate of 1.0%.

Estimation of Site Generated Trips for the Proposed Development	5.	The proposed development is expected to generate approximately 251 two-way vehicle trips (85 vph entering and 166 vph exiting) during the AM peak hour and 381 two-way vehicle trips (211 vph entering and 170 vph exiting) during the PM peak hour.
Trip Distribution and Assignment	6.	External trips generated by the development have been assigned to study area streets and intersections based on review of the local street network and development surrounding the site as well as local knowledge of the area.
Signal Warrant Analysis	7.	Signal warrant analyses were completed for Windgate Drive intersections at Beaver Bank Road and Windsor Junction Road for projected 2025 background traffic with the addition of trips generated by the proposed development. Traffic signals are not expected to be warranted at the Beaver Bank Road (88 warrant points) or the Windsor Junction Road (21 warrant points) intersections.
Left Turn Lane Warrant	8.	Analysis of left turn lane warrants was completed for eastbound left turns from Windgate Drive into the proposed site access street for projected 2025 volumes with the addition of site generated trips. The analysis indicated that left turn lanes are <u>not</u> expected to be warranted for all scenarios.
Summary - Level of Service Analysis	9.	Intersection performance analysis was completed for Windgate Drive intersections at Beaver Bank Road, Windsor Junction Road, and the proposed site access street. Results indicate that intersection performance at the Windgate Drive - Windsor Junction Road and Windgate Drive - proposed site access street intersections are expected to be satisfactory based on 2025 AM and PM peak hour volumes both without and with site development. At the Beaver Bank Road – Windgate Drive intersection, results indicate that the Windgate Drive (westbound) approach will experience excessive average delay, V/C ratio, and queue lengths - particularly the PM peak hour – both without and with the addition of site generated trips.
Recommendations	10.	Further investigation should be completed to determine a final location for the proposed site access road to Windgate Drive, and to determine whether modifications to the existing road profile are necessary to improve sight distance.
	11.	Consideration should be given to the installation of traffic signals at the Beaver Bank Road – Windgate Drive intersection to accommodate existing traffic demand as well as projected traffic demand (both without and with site development). Though traffic signal warrants were not met, installation of signals will improve unacceptably high delays currently experienced on the Windgate Drive approach during AM and PM peak periods.
Conclusions	12.	Site generated trips are not expected to have a significant impact to

Site generated trips are not expected to have a significant impact to traffic performance in the Study Area.

Appendix A

Intersection Turning Movement Counts

Traffic Volume Diagrams

Traffic Signal Warrants

P

Table A-1Windgate Drive @Rivendale DriveBeaver Bank, NS Wednesday, March 4, 2015					J − 		wīn ★ gate Drive	ndgate Drive - F - E	
	AM Peak Period \								
	Windgate Drive				ale Drive	•	Windgate Drive		
Ti	me	Westbound Approach			d Approach		Approach	Vehicles	
		E	F	G	I	J	K		
07:00	07:15	11	0	6	3	1	12	33	
07:15	07:30	11	0	8	5	0	14	38	
07:30	07:45	21	3	14	11	2	28	79	
07:45	08:00	12	2	14	5	1	41	75	
08:00	08:15	6	1	8	8	2	29	54	
08:15	08:30	21	2	3	8	2	25	61	
08:30	08:45	12	2	9	3	4	28	58	
08:45	09:00	15	2	12	3	1	25	58	
AM Pea	ak Hour	60	8	39	32	7	123	269	
			PM Pea	k Period Vo	lume Data				
		Windga	te Drive	Rivenda	ale Drive	Windga	te Drive	Tatal	
Ti	me	Westbound	d Approach	Southboun	Approach Eastbound Approach		Total Vehicles		
		Е	F	G	I	J	K	VEIIICIES	
15:30	15:45	23	5	3	3	10	30	74	
15:45	16:00	28	7	3	2	8	20	68	
16:00	16:15	37	8	4	5	3	21	78	
16:15	16:30	24	5	4	1	7	24	65	
16:30	16:45	21	3	4	4	5	33	70	
16:45	17:00	15	5	3	0	11	29	63	
17:00	17:15	19	7	2	2	5	24	59	
17:15	17:30	29	8	4	5	12	24	82	
PM Pea	ak Hour	112	25	14	11	28	95	285	

Thursda	Winds	Table A- /indgate D @ sor Junctic Beaver Bank, Peak) and Friday	rive on Road ^{NS}	ak), 2015	Wit	A Mundaer Maddaer M	H ↓ ↑ ↑ ↑	Windsor Junction Road
			AM Pea	k Period Vo	lume Data			
		Windsor Ju			nction Road	Windga	te Drive	
Tir	me	Northbound	d Approach	Southboun	d Approach	Eastbound	d Approach	Total Vehicles
		А	В	Н	I	J	L	venicies
07:00	07:15	4	18	16	2	17	26	83
07:15	07:30	8	8	11	8	21	31	87
07:30	07:45	4	8	23	17	30	43	125
07:45	08:00	9	15	20	11	28	44	127
08:00	08:15	12	16	15	17	30	28	118
08:15	08:30	7	9	17	4	17	23	77
08:30	08:45	6	10	14	7	17	17	71
08:45	09:00	9	14	19	11	32	18	103
AM Pea	k Hour	33	47	69	53	109	146	457
			PM Pea	k Period Vo	lume Data			
		Windsor Ju	nction Road	Windsor Ju	nction Road	Windga	te Drive	
Tir	me	Northbound	d Approach	Southboun	d Approach	Eastbound	d Approach	Total Vehicles
		A	В	Н	I	J	L	venicies
15:30	15:45	9	14	20	8	8	10	69
15:45	16:00	15	14	17	15	16	11	88
16:00	16:15	10	16	14	21	21	15	97
16:15	16:30	22	19	12	19	15	18	105
16:30	16:45	29	19	14	22	18	8	110
16:45	17:00	27	29	17	21	15	12	121
17:00	17:15	21	24	14	19	17	15	110
17:15	17:30	35	25	17	17	22	7	123
PM Pea	k Hour	112	97	62	79	72	42	464

	W	Table A- aver Bank @ Vindgate Du Beaver Bank, Griday, August 10,	Road rive* NS 2012	k Devied Ve	Beaver Bank Road	HG ↓ ↓ ₿ C	Windgate	 !
		Deres D		k Period Vo		Deres D	ank Datit	1
			ank Road	-	te Drive		ank Road	Total
Ti	ime		d Approach		d Approach		d Approach	Vehicles
		В	С	D	F	G	Н	
07:00	07:15	38	20	22	3	10	175	268
07:15	07:30	45	22	18	2	13	175	275
07:30	07:45	34	22	20	1	6	162	245
07:45	08:00	53	24	26	2	11	180	296
08:00	08:15	59	18	12	4	8	148	249
08:15	08:30	67	15	16	6	5	134	243
08:30	08:45	70	16	13	6	10	137	252
08:45	09:00	68	22	19	12	7	139	267
AM Pea	ak Hour	170	88	86	8	40	692	1084
			Noon Pe	ak Period V	olume Data			
		Beaver B	ank Road	Windga	te Drive	Beaver B	ank Road	Tatal
Ti	ime	Northbound	d Approach	Westbound	d Approach	Southboun	d Approach	Total Vehicles
		В	С	D	F	G	Н	Vonioloo
11:00	11:15	80	12	14	5	5	71	187
11:00 11:15	11:15 11:30	80 83	12 14	14 19	5 2	5 5	71 71	187 194
11:15	11:30	83	14	19	2	5	71	194
11:15 11:30	11:30 11:45	83 82	14 21	19 19 19 16	2 1	5 5 3 5	71 83	194 211
11:15 11:30 11:45	11:30 11:45 12:00	83 82 81	14 21 21	19 19 19	2 1 7	5 5 3 5 5	71 83 80	194 211 211
11:15 11:30 11:45 12:00	11:30 11:45 12:00 12:15	83 82 81 84	14 21 21 16	19 19 19 16	2 1 7 4	5 5 3 5 5 5	71 83 80 94	194 211 211 219
11:15 11:30 11:45 12:00 12:15 12:30 12:45	11:30 11:45 12:00 12:15 12:30 12:45 13:00	83 82 81 84 83 78 75	14 21 16 27 31 20	19 19 16 23 16 15	2 1 7 4 4 10 3	5 5 5 5 5 5 5 5	71 83 80 94 93 87 93	194 211 219 235 227 211
11:15 11:30 11:45 12:00 12:15 12:30 12:45	11:30 11:45 12:00 12:15 12:30 12:45	83 82 81 84 83 78	14 21 21 16 27 31	19 19 19 16 23 16	2 1 7 4 4 10	5 5 3 5 5 5	71 83 80 94 93 87	194 211 211 219 235 227
11:15 11:30 11:45 12:00 12:15 12:30 12:45	11:30 11:45 12:00 12:15 12:30 12:45 13:00	83 82 81 84 83 78 75	14 21 16 27 31 20 68	19 19 16 23 16 15	2 1 7 4 4 10 3 15	5 5 5 5 5 5 5 5	71 83 80 94 93 87 93	194 211 219 235 227 211
11:15 11:30 11:45 12:00 12:15 12:30 12:45	11:30 11:45 12:00 12:15 12:30 12:45 13:00	83 82 81 84 83 78 75 326	14 21 16 27 31 20 68	19 19 16 23 16 15 71 k Period Vo	2 1 7 4 4 10 3 15	5 5 5 5 5 5 18	71 83 80 94 93 87 93	194 211 219 235 227 211 803
11:15 11:30 11:45 12:00 12:15 12:30 12:45 Noon Pe	11:30 11:45 12:00 12:15 12:30 12:45 13:00	83 82 81 84 83 78 75 326 Beaver B	14 21 16 27 31 20 68 PM Pea	19 19 16 23 16 15 71 k Period Vo Windga	2 1 7 4 4 10 3 15 Jume Data	5 5 5 5 5 18 Beaver B	71 83 80 94 93 87 93 305	194 211 219 235 227 211 803 Total
11:15 11:30 11:45 12:00 12:15 12:30 12:45 Noon Pe	11:30 11:45 12:00 12:15 12:30 12:45 13:00 eak Hour	83 82 81 84 83 78 75 326 Beaver B	14 21 16 27 31 20 68 PM Pea ank Road	19 19 16 23 16 15 71 k Period Vo Windga	2 1 7 4 4 10 3 15 Iume Data te Drive	5 5 5 5 5 18 Beaver B	71 83 80 94 93 87 93 305 ank Road	194 211 219 235 227 211 803
11:15 11:30 11:45 12:00 12:15 12:30 12:45 Noon Pe	11:30 11:45 12:00 12:15 12:30 12:45 13:00 eak Hour	83 82 81 84 83 78 75 326 Beaver B Northbound	14 21 16 27 31 20 68 PM Pea ank Road d Approach	19 19 16 23 16 15 71 k Period Vo Windga Westbound	2 1 7 4 4 10 3 15 Iume Data te Drive d Approach	5 5 5 5 5 18 Beaver B Southboun	71 83 80 94 93 87 93 305 ank Road d Approach	194 211 219 235 227 211 803 Total
11:15 11:30 11:45 12:00 12:15 12:30 12:45 Noon Pe	11:30 11:45 12:00 12:15 12:30 12:45 13:00 eak Hour	83 82 81 84 83 78 75 326 Beaver B Northbound B	14 21 16 27 31 20 68 PM Pea ank Road d Approach C	19 19 16 23 16 15 71 k Period Vo Windga Westbound D	2 1 7 4 10 3 15 Iume Data te Drive d Approach F	5 5 5 5 5 5 18 Beaver B Southboun G	71 83 80 94 93 87 93 305 ank Road d Approach H	194 211 219 235 227 211 803 Total Vehicles
11:15 11:30 11:45 12:00 12:15 12:30 12:45 Noon Pe Ti 15:30	11:30 11:45 12:00 12:15 12:30 12:45 13:00 eak Hour ime 15:45	83 82 81 84 83 78 75 326 Beaver B Northbound B 163	14 21 16 27 31 20 68 PM Pea ank Road d Approach C 39	19 19 16 23 16 15 71 k Period Vo Windga Westbound D 27	2 1 7 4 4 10 3 15 Hume Data te Drive d Approach F 6	5 5 5 5 5 18 Beaver B Southboun G 14	71 83 80 94 93 87 93 305 ank Road d Approach H 99	194 211 219 235 227 211 803 Total Vehicles 348
11:15 11:30 11:45 12:00 12:15 12:30 12:45 Noon Pe Ti 15:30 15:45	11:30 11:45 12:00 12:15 12:30 12:45 13:00 eak Hour ime 15:45 16:00	83 82 81 84 83 78 75 326 Beaver B Northbound B 163 180	14 21 16 27 31 20 68 PM Pea ank Road d Approach C 39 37	19 19 19 16 23 16 15 71 k Period Vo Windga Westbound D 27 32	2 1 7 4 4 10 3 15 Iume Data te Drive d Approach F 6 7	5 5 5 5 5 18 Beaver B Southboun G 14 7	71 83 80 94 93 87 93 305 ank Road d Approach H 99 88	194 211 219 235 227 211 803 Total Vehicles 348 351
11:15 11:30 11:45 12:00 12:15 12:30 12:45 Noon Pe Ti 15:30 15:45 16:00	11:30 11:45 12:00 12:15 12:30 12:45 13:00 eak Hour ime 15:45 16:00 16:15	83 82 81 84 83 78 75 326 Beaver B Northbound B 163 180 199	14 21 21 31 20 68 PM Pea ank Road d Approach C 39 37 37	19 19 19 16 23 16 15 71 k Period Vo Windga Westbound D 27 32 25	2 1 7 4 4 10 3 15 Jume Data te Drive d Approach F 6 7 14	5 5 5 5 5 18 Beaver B Southboun G 14 7 8	71 83 80 94 93 87 93 305 ank Road d Approach H 99 88 90	194 211 219 235 227 211 803 Total Vehicles 348 351 373
11:15 11:30 11:45 12:00 12:15 12:30 12:45 Noon Pe Ti 15:30 15:45 16:00 16:15	11:30 11:45 12:00 12:15 12:30 12:45 13:00 eak Hour ime 15:45 16:00 16:15 16:30	83 82 81 84 83 78 75 326 Beaver B Northbound B 163 180 199 233	14 21 21 31 20 68 PM Pea ank Road d Approach C 39 37 37 37 26	19 19 19 16 23 16 15 71 k Period Vo Windga Westbound D 27 32 25 20	2 1 7 4 10 3 15 Jume Data te Drive d Approach F 6 7 14 12	5 5 5 5 5 18 Beaver B Southboun G 14 7 8 10	71 83 80 94 93 87 93 305 ank Road d Approach H 99 88 90 77	194 211 219 235 227 211 803 Total Vehicles 348 351 373 378
11:15 11:30 11:45 12:00 12:15 12:30 12:45 Noon Pe Ti 15:30 15:45 16:00 16:15 16:30	11:30 11:45 12:00 12:15 12:30 12:45 13:00 eak Hour ime 15:45 16:00 16:15 16:30 16:45	83 82 81 84 83 78 75 326 Beaver B Northbourn B 163 180 199 233 264	14 21 21 31 20 68 PM Pea ank Road d Approach C 39 37 37 37 26 46	19 19 19 16 23 16 15 71 k Period Vo Windga Westbound D 27 32 25 20 32	2 1 7 4 10 3 15 Jume Data te Drive d Approach F 6 7 14 12 19	5 5 5 5 5 18 Beaver B Southboun G 14 7 8 10 7	71 83 80 94 93 87 93 305 ank Road d Approach H 99 88 90 77 122	194 211 219 235 227 211 803 Total Vehicles 348 351 373 378 490
11:15 11:30 11:45 12:00 12:15 12:30 12:45 Noon Pe Ti 15:30 15:45 16:00 16:15 16:30 16:45	11:30 11:45 12:00 12:15 12:30 12:45 13:00 eak Hour ime 15:45 16:00 16:15 16:30 16:45 17:00	83 82 81 84 83 78 75 326 Beaver B Northbourn B 163 180 199 233 264 218	14 21 21 31 20 68 PM Pea ank Road d Approach C 39 37 37 37 26 46 36	19 19 19 16 23 16 15 71 k Period Vo Windga Westbound D 27 32 25 20 32 24	2 1 7 4 10 3 15 Jume Data te Drive d Approach F 6 7 14 12 19 19	5 5 5 5 5 18 Beaver B Southboun G 14 7 8 10 7 5	71 83 80 94 93 87 93 305 ank Road d Approach H 99 88 90 77 122 109	194 211 219 235 227 211 803 Total Vehicles 348 351 373 378 490 411

*Count obtained from HALIFAX Traffic & ROW Services.

2005 Canadian Traffic Signal Warrant Matrix Analysis Table A-4: Beaver Bank Road @ Windgate Drive Projected 2025 Background Traffic Volumes without Site Development

Main Street (name)	Bea	ver Bank R	Road	Dire	ection (E	W or NS)	NS		Date:		March 2015	
Side Street (name)	W	indgate Dr	ive	Dire	ection (E	W or NS)	EW		City:		Halifax NS	
Lane Configuration		ExclLT	Th & LT	Through or Th+RT+LT	Th & RT	Excl RT	UpStream Signal (m)	# of Thru Lanes				
Beaver Bank Road	NB				1			1				
Beaver Bank Road	SB		1				1,000	1				
Windgate Drive	WB			1								
	EB											
Other input		Speed (Km/h)	Trucks	Bus Rt (y/n)	Median (m)							
Beaver Bank Road	NS	50	2.0%	n	0.0							
Windgate Drive	EW	50	2.0%	n								
	Ped1	Ped2	Ped3	Ped4	1		Demograp	phics			1	1
	NS	NS	EW	EW			Elementar			(y/n)	y	
	W Side	E Side	N Side	S side			Senior's Co			(y/n)	n	
7:00 :00 - 8	0	0	0	0				chool t		y/n)	(n	
8:00 :00 - 9	0	0	0	0				a opu l atio		#)	(300,000	
11:30 2:30 - 1	0	0	0	0			Central u	isiness Bist	rict D	(y/n)	n	l
12:30 3:30 - 1 15:30 6:30 - 1	0	0	0	0	-							
15:30 6:30 - 1 16:30 7:30 - 1	0	0	0	0								
Total 6-hour (eak) p	0	0	0	0								
Average 6-hour (ak)	, 0 , 0	0	0	0								
					•							
Traffic Input		NB			SB			WB			EB	
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT
7:00 - 8:00	0	185	100	45	760	0	95	0	5	0	0	0
8:00 - 9:00	0	140	75	35	570	0	70	0	5	0	0	0
11:30 - 12:30	0	360	75	20	335	0	80	0	15	0	0	0
12:30 - 13:30	0	350	105	20	405	0	75	0	25	0	0	0
15:30 - 16:30	0	985	130	30	435	0	105	0	55	0	0	0
16:30 - 17:30	0	835	110	25	370	0	90	0	45	0	0	0
Total (6-hour peak)	0	2,855	595	175	2,875	0	515	0	150	0	0	0
Average (6-hour peak)	0	476	99	29	479	0	86	0	25	0	0	0

2005 Canadian Traffic Signal Warrant Matrix Analysis Table A-5: Beaver Bank Road @ Windgate Drive Projected 2025 Background Traffic Volumes with Site Development

Main Street (name)	Bea	ver Bank R	Road	Dire	ection (E	W or NS)	NS		Date:		March 2015	
Side Street (name)	w	indgate Dr	ive	Dire	ection (E	W or NS)	EW		City:		Halifax NS	
Lane Configuration		Excl LT	Th & LT	Through or Th+RT+LT	Th & RT	Excl RT	UpStream Signal (m)	# of Thru Lanes				
Beaver Bank Road	NB				1			1				
Beaver Bank Road	SB		1				1,000	1				
Windgate Drive	WB			1								
	EB											
Other input		Speed (Km/h)	Trucks %	Bus Rt (y/n)	Median (m)							
Beaver Bank Road	NS	50	2.0%	n	0.0	l						
Windgate Drive	EW	50	2.0%	n		J						
	Ped1	Ped2	Ped3	Ped4	1		Demograp	ohics				
	NS	NS	EW	EW			Elementary			(y/n)	v	
	W Side	E Side	N Side	S side			Senior's Co			(y/n) (y/n)	n	
7:00 :00 - 8	0	0	0	0				chool t	5	y/n)	(n	
8:00 :00 - 9	0	0	0	0				a opu k atio		#)	(300,000	
11:30 2:30 - 1	0	0	0	0			Central u	siness Bist	rict D	(y/n)	n	
12:30 3:30 - 1 15:30 6:30 - 1	0	0	0	0								
16:30 7:30 - 1	0	0	0	0								
Total 6-hour (eak) p	Ő	0	0	0								
Average 6-hour (eak)) 0	0	0	0								
Traffic Input		NB			SB		1	WB			EB	
Think input	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT
7:00 - 8:00	0	185	125	55	760	0	145	0	30	0	0	0
8:00 - 9:00	0	140	95	40	570	0	110	0	20	0	0	0
11:30 - 12:30	0	360	75	20	335	0	80	0	15	0	0	0
12:30 - 13:30	0	350	105	20	405	0	75	0	25	0	0	0
15:30 - 16:30	0	985	195	55	435	0	155	0	80	0	0	0
16:30 - 17:30	0	835	165	45	370	0	135	0	65	0	0	0
Total (6-hour peak)	0	2,855	760	235	2,875	0	700	0	235	0	0	0
Average (6-hour peak)	0	476	127	39	479	0	117	0	39	0	0	0

WSP Canada Inc.

2005 Canadian Traffic Signal Warrant Matrix Analysis Table A-6: Windsor Junction Road @ Windgate Drive

Projected 2025 Background Traffic Volumes with Site Development

	Winds	sor Junctio	n Road	Dir	ection (EV	W or NS)	NS		Date:		March 2015		
Side Street (name)	W	indgate Dr	ive	Dir	ection (EV	W or NS)	EW		City:		Halifax NS		
								_					
Lane Configuration		5	LT	Through or Th+RT+LT	RT	τ	UpStream Signal (m)	# of Thru Lanes					
a		ExclLT	Th & LT	hrou h+R	Th & RT	ExclRT	JpStr	# of Ls					
Windsor Junction Road	NB	ш	1	LL	F	ш	D S	1					
Windsor Junction Road	SB				1		1,000	1					
Windgate Drive	WB			1									
	EB						1						
Other input		Speed	Trucks	Bus Rt	Median								
Windsor Junction Road	NS	(Km/h) 50	% 2.0%	(y/n) n	(m) 0.0								
Windgate Drive	EW	50	2.0%	n									
	Ped1	Ped2	Ped3	Ped4	1		Demograp	ohics				1	
	NS	NS	EW	EW			Elementar			(y/n)	у		
	W Side	E Side	N Side	S side			Senior's Co		_	(y/n)	n		
7:00 :00 - 8 8:00 :00 - 9	0	0	0	0				choolt a opunkatio		y/n) #)	(n (300,000		
11:30 2:30 -1	0	0	0	0				siness Bist		(y/n)	n		
12:30 3:30 - 1 15:30 6:30 - 1	0	0	0	0									
16:30 7:30 - 1	0	0	0	0									
Total 6-hour (eak)		0	0	0									
Average 6-hour (eak)	p 0	0	0	0	1								
	1			T			1						
Traffic Input		NB			SB			WB			EB		
7.00 0.00	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	
7:00 - 8:00 8:00 - 9:00	45 35	55 40	0	0	80 60	85 65	0	0	0	170 130	0	185 140	
11:30 - 12:30	50	40	0	0	40	60	0	0	0	75	0	65	
12:30 - 13:30	50	40	0	0	40	60	0	0	0	75	0	65	
15:30 - 16:30	150	110	0	0	70	150	0	0	0	130	0	65	
16:30 - 17:30	130	95	0	0	60	130	0	0	0	110	0	55	
	4												
Total (6-hour peak)	460	380	0	0	350	550	0	0	0	690	0	575	
Total (6-hour peak) Average (6-hour peak)	77	63	0			550 92	0		0	690 115	0	575 96	
Total (6-hour peak) Average (6-hour peak) Average 6-hou	77	63 Turni	0 0 End	RT 0	350 58 8 0 HL	92 17	0	0					
Total (6-hour peak) Average (6-hour peak) Average 6-hou	77 r Peak	63 Turni	0 0	0	350 58 8 M	92	0	0 0 EB					
Total (6-hour peak) Average (6-hour peak) Average 6-hou	77 r Peak	63 Turni	0 0 End	RT 0	350 58 8 0 HL	92 17	0	0 0 EB					
Total (6-hour peak) Average (6-hour peak) Average 6-hou Move	77 Tr Peak ements	63 Turn	0 0 End	RT 0	350 58 8 0 HL	92 17	0	0 0 EB		0	0 RT	96	
Total (6-hour peak) Average (6-hour peak) Average 6-hou	77 Tr Peak ements	63 Turni	0 0 End	RT 0	350 58 8 0 HL	92 17	0	0 0 EB		115	0		NB
Total (6-hour peak) Average (6-hour peak) Average 6-hou Move	77 Tr Peak ements	63 Turn	0 0 End	RT 0	350 58 8 0 HL	92 17	0	0 0 EB		0	0 RT	96	NB
Total (6-hour peak) Average (6-hour peak) Average 6-hou Move	77 Tr Peak ements	63 Turni 178	0 0 bed3	RT 0	350 58 8 0 HL	92 17	0	0 0 EB		115 0 63	0 RT TH	96	
Total (6-hour peak) Average (6-hour peak) Average 6-hou Move	77 Tr Peak ements	63 Turn	0 0 End	RT 0	350 58 8 0 HL	92 17	0	0 0 EB		115 0 63	0 RT TH	96	
Total (6-hour peak) Average (6-hour peak) Average 6-hou Move	77 Tr Peak ements	63 Turni 178	0 0 bed3	RT 0	350 58 8 0 HL	92 17	0	0 0 EB		115 0 63	0 RT TH	96 140 Windsor J	
Total (6-hour peak) Average (6-hour peak) Average 6-hou Move Move Sources Sources Morth	r Peak ements	63 Turn 178 LT TH	0 0 0 0 0 58	RT 0	350 58 8 0 HL	92 17	0	0 0 EB		115 0 63	0 RT TH LT	96 140 Windsor J	unction I
Total (6-hour peak) Average (6-hour peak) Average 6-hou Move Move <north< td=""><td>r Peak ements</td><td>63 Turni 178 LT</td><td>o o fing 0 beq3</td><td>RT 0</td><td>350 58 8 0 HL</td><td>92 17</td><td>0</td><td>0 0 EB</td><td></td><td>115 0 63</td><td>0 RT TH LT</td><td>96 140 Windsor J</td><td>unction I</td></north<>	r Peak ements	63 Turni 178 LT	o o fing 0 beq3	RT 0	350 58 8 0 HL	92 17	0	0 0 EB		115 0 63	0 RT TH LT	96 140 Windsor J	unction I
Total (6-hour peak) Average (6-hour peak) Average 6-hou Move Move <north< td=""><td>r Peak ements</td><td>63 Turn 178 LT TH</td><td>0 0 0 0 0 58</td><td>RT 0</td><td>350 58 8 0 HL</td><td>92 17</td><td>Windgate •</td><td>0 0 EB</td><td></td><td>115 0 63</td><td>0 RT TH LT</td><td>96 140 Windsor J</td><td>unction I</td></north<>	r Peak ements	63 Turn 178 LT TH	0 0 0 0 0 58	RT 0	350 58 8 0 HL	92 17	Windgate •	0 0 EB		115 0 63	0 RT TH LT	96 140 Windsor J	unction I
Total (6-hour peak) Average (6-hour peak) Average 6-hou Move Move <north< td=""><td>r Peak ements</td><td>63 Turn 178 LT TH</td><td>0 0 0 0 0 58</td><td>RT 0</td><td>350 58 8M 0 HL 0</td><td>92 17</td><td>115 Windgate e</td><td>0 EB ></td><td>9</td><td>0 63 77</td><td>0 RT TH LT</td><td>96 140 Windsor J</td><td>unction I</td></north<>	r Peak ements	63 Turn 178 LT TH	0 0 0 0 0 58	RT 0	350 58 8M 0 HL 0	92 17	115 Windgate e	0 EB >	9	0 63 77	0 RT TH LT	96 140 Windsor J	unction I
Total (6-hour peak) Average (6-hour peak) Average 6-hou Move Move <north< td=""><td>r Peak ements</td><td>63 Turn 178 LT TH</td><td>0 0 0 0 0 58</td><td>RT 0</td><td>350 58 8 0 HL</td><td>92 17</td><td>Windgate •</td><td>0 EB ^</td><td></td><td>0 63 77</td><td>0 RT TH LT</td><td>96 140 Windsor J</td><td>unction I</td></north<>	r Peak ements	63 Turn 178 LT TH	0 0 0 0 0 58	RT 0	350 58 8 0 HL	92 17	Windgate •	0 EB ^		0 63 77	0 RT TH LT	96 140 Windsor J	unction I
Total (6-hour peak) Average (6-hour peak) Average 6-hou Move Move <north< td=""><td>r Peak ements</td><td>63 Turn 178 LT TH</td><td>0 0 0 0 0 58</td><td>RT 0</td><td>350 58 8 M 0 HL 0</td><td>92 17</td><td>115 Windgate e</td><td>1H 0 EB ></td><td>9</td><td>0 63 77</td><td>0 RT TH LT</td><td>96 140 Windsor J</td><td>unction I</td></north<>	r Peak ements	63 Turn 178 LT TH	0 0 0 0 0 58	RT 0	350 58 8 M 0 HL 0	92 17	115 Windgate e	1H 0 EB >	9	0 63 77	0 RT TH LT	96 140 Windsor J	unction I
Total (6-hour peak) Average (6-hour peak) Average 6-hou Move Move <north< td=""><td>r Peak ements</td><td>63 Turn 178 LT TH</td><td>0 0 0 0 0 58</td><td>RT 0</td><td>350 58 8M 0 HL 0 891 8M</td><td>92 17</td><td>115 Windgate e</td><td>211 TH 0 EB > 0</td><td>9</td><td>0 63 77</td><td>0 RT TH LT</td><td>96 140 Windsor J</td><td>unction I</td></north<>	r Peak ements	63 Turn 178 LT TH	0 0 0 0 0 58	RT 0	350 58 8M 0 HL 0 891 8M	92 17	115 Windgate e	211 TH 0 EB > 0	9	0 63 77	0 RT TH LT	96 140 Windsor J	unction I
Total (6-hour peak) Average (6-hour peak) Average 6-hou Move Move	r Peak ements	63 Turn 178 LT TH	0 0 0 0 0 58	RT 0	350 58 8 M 0 HL 0	92 17	115 Windgate e	1H 0 EB >	9	0 63 77	0 RT TH LT	96 140 Windsor J	unction I

W = $[C_{bt}(X_{v-v}) / K_1 + (F(X_{v-p}) L) / K_2] \ge C_i$ W = 21 21 0

NOT Warranted

0 Veh Ped

Appendix B

Intersection Performance Analysis

		Jale DI					2023 AMT		
	4	×	1	1	1	Ŧ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	Y		ef.		٦	•			
Volume (veh/h)	95	5	185	100	45	760			
Sign Control	Stop		Free			Free			
Grade	0%		0%			0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	103	5	201	109	49	826			
Pedestrians									
Lane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type			None			None			
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
vC, conflicting volume	1179	255			310				
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	1179	255			310				
tC, single (s)	6.4	6.2			4.1				
tC, 2 stage (s)									
tF (s)	3.5	3.3			2.2				
p0 queue free %	49	99			96				
cM capacity (veh/h)	202	783			1251				
Direction, Lane #	WB 1	NB 1	SB 1	SB 2					
Volume Total	109	310	49	826					
Volume Left	103	0	49	0_0					
Volume Right	5	109	0	0 0					
cSH	210	1700	1251	1700					
Volume to Capacity	0.52	0.18	0.04	0.49					
Queue Length 95th (m)	20.2	0.0	0.9	0.0					
Control Delay (s)	39.2	0.0	8.0	0.0					
Lane LOS	E	0.0	0.0 A	0.0					
Approach Delay (s)	39.2	0.0	0.4						
Approach LOS	E	0.0	0.1						
Intersection Summary	-								
Average Delay			3.6						
Intersection Capacity Utiliza	ation		52.2%	IC	U Level	of Service		А	
Analysis Period (min)	-		15						
			10						

٦	\mathbf{F}	1	Ť	ţ	∢	
Movement EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations			र्भ	ţ,		
Volume (veh/h) 125	165	35	_ 55	_ 80	60	
Sign Control Stop			Free	Free		
Grade 0%	0.00	0.00	0%	0%	0.00	
Peak Hour Factor 0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph) 136 Pedestrians	179	38	60	87	65	
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None	None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume 255	120	152				
vC1, stage 1 conf vol						
vC2, stage 2 conf vol	400	450				
vCu, unblocked vol 255	120	152				
tC, single (s) 6.4	6.2	4.1				
tC, 2 stage (s) tF (s) 3.5	3.3	2.2				
tF (s) 3.5 p0 queue free % 81	3.3 81	2.2 97				
cM capacity (veh/h) 714	932	1429				
Direction, Lane #EB 1Volume Total315	NB 1 98	SB 1 152				
Volume Left 136	98 38	152				
Volume Right 179	0	65				
cSH 823	1429	1700				
Volume to Capacity 0.38	0.03	0.09				
Queue Length 95th (m) 13.7	0.6	0.0				
Control Delay (s) 12.1	3.1	0.0				
Lane LOS B	А					
Approach Delay (s) 12.1	3.1	0.0				
Approach LOS B						
Intersection Summary						
Average Delay		7.3				
Intersection Capacity Utilization		39.8%	IC	U Level c	of Service	А
Analysis Period (min)		15				

Movement WBL WBR NBT NBR SBL SBT Lane Configurations Y Image: Second s
Volume (veh/h) 105 55 985 130 30 435
Sign ControlStopFreeFreeGrade0%0%0%
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92
Hourly flow rate (vph)11460107114133473PedestriansLane Width (m)Walking Speed (m/s)Percent BlockageRight turn flare (veh)
Median typeNoneNoneMedian storage veh)Upstream signal (m)pX, platoon unblocked
vC, conflicting volume 1679 1141 1212 vC1, stage 1 conf vol vC2, stage 2 conf vol
vCu, unblocked vol 1679 1141 1212
tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s)
tF (s) 3.5 3.3 2.2
p0 queue free % 0 76 94 cM capacity (veh/h) 98 244 576
Direction, Lane # WB 1 NB 1 SB 1 SB 2
Volume Total 174 1212 33 473
Volume Left 114 0 33 0
Volume Right 60 141 0 0
cSH 124 1700 576 1700
Volume to Capacity 1.41 0.71 0.06 0.28
Queue Length 95th (m) 89.7 0.0 1.4 0.0
Control Delay (s) 288.8 0.0 11.6 0.0
Lane LOS F B
Approach Delay (s) 288.8 0.0 0.8 Approach LOS F
Intersection Summary
Average Delay 26.8
Intersection Capacity Utilization75.6%ICU Level of ServiceAnalysis Period (min)15

	≯	\mathbf{i}	1	1	Ļ	∢		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations Volume (veh/h) Sign Control Grade	₩ 80 Stop 0%	45	125	র্ব 110 Free 0%	70 Free 0%	90		
Peak Hour Factor Hourly flow rate (vph) Pedestrians	0.92 87	0.92 49	0.92 136	0.92 120	0.92 76	0.92 98		
Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh)				Niere	Nore			
Median type Median storage veh) Upstream signal (m) pX, platoon unblocked				None	None			
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	516	125	174					
vCu, unblocked vol	516	125	174					
tC, single (s) tC, 2 stage (s)	6.4	6.2	4.1					
tF (s)	3.5	3.3	2.2					
p0 queue free %	81	95	90					
cM capacity (veh/h)	469	926	1403					
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total	136	255	174					
Volume Left	87	136	0					
Volume Right	49 570	0	98 1700					
cSH Valume te Canacitu	570 0.24	1403	1700 0.10					
Volume to Capacity Queue Length 95th (m)	0.24 7.0	0.10 2.4	0.10					
Control Delay (s)	13.3	2.4 4.6	0.0					
Lane LOS	13.3 B	4.0 A	0.0					
Approach Delay (s)	13.3	4.6	0.0					
Approach LOS	В		0.0					
Intersection Summary								
Average Delay			5.3					
Intersection Capacity Utiliz	ation		39.1%	IC	CU Level o	of Service	А	
Analysis Period (min)			15					

T. Deaver Dank Road		Jale DI					2023 A		
	4	×	1	1	1	Ļ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	Y		el el		ľ	†			
Volume (veh/h)	145	28	185	127	55	760			
Sign Control	Stop		Free			Free			
Grade	0%		0%			0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	158	30	201	138	60	826			
Pedestrians									
Lane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type			None			None			
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
vC, conflicting volume	1216	270			339				
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	1216	270			339				
tC, single (s)	6.4	6.2			4.1				
tC, 2 stage (s)									
tF (s)	3.5	3.3			2.2				
p0 queue free %	17	96			95				
cM capacity (veh/h)	190	769			1220				
Direction, Lane #	WB 1	NB 1	SB 1	SB 2					
Volume Total	188	339	60	826					
Volume Left	158	0	60	0					
Volume Right	30	138	0	0					
cSH	217	1700	1220	1700					
Volume to Capacity	0.87	0.20	0.05	0.49					
Queue Length 95th (m)	51.7	0.0	1.2	0.0					
Control Delay (s)	77.8	0.0	8.1	0.0					
Lane LOS	F		A						
Approach Delay (s)	77.8	0.0	0.5						
Approach LOS	F								
Intersection Summary									
Average Delay			10.7					_	
Intersection Capacity Utiliza	ation		56.4%	IC	U Level	of Service		В	
Analysis Period (min)			15						

	٦	\mathbf{i}	1	1	Ļ	∢		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	Y			ب ا ا	ef 🗧			
Volume (veh/h)	172	184	46	55	80	87		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	187	200	50	60	87	95		
Pedestrians								
Lane Width (m) Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)				Nono	Nono			
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	294	134	182					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	294	134	182					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)								
tF (s)	3.5	3.3	2.2					
p0 queue free %	72	78	96					
cM capacity (veh/h)	672	915	1394					
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total	387	110	182					
Volume Left	187	50	0					
Volume Right	200	0	95					
cSH Volume to Conseitu	779	1394	1700					
Volume to Capacity Queue Length 95th (m)	0.50 21.3	0.04 0.8	0.11 0.0					
Control Delay (s)	14.1	0.8 3.7	0.0					
Lane LOS	В	3.7 A	0.0					
Approach Delay (s)	14.1	3.7	0.0					
Approach LOS	B	0.1	0.0					
Intersection Summary								
Average Delay			8.6					
Intersection Capacity Utiliza	ation		45.8%	10	CU Level o	of Service	А	
Analysis Period (min)			15					

Movement EBL EBT WBT WBR SBL SBR Lane Configurations		٦	-	-	•	1	1		
Volume (veh/h) 27 180 78 25 44 52 Sign Control Free Free Stop	Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Sign Control Free Free Stop Grade 0% 0% 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 29 196 85 27 48 57 Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 112 353 98 vC1, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol 112 353 98 Vc2, stage (s) tf (s) 2.2 3.5 3.3 p0 Outeue free % 98 92 94 ediacapacity (veh/h) 1478 632 958 Direction, Lane # EB WB SB 1 Volume Right 0 27 57 CSH 1478 1700 775 Volume Right 0 27 57				4Î					
Grade 0% 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 29 196 85 27 48 57 Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (m) VQ, conflicting volume 112 353 98 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC4, unblocked vC4, unblocked vol 112 353 98 tC, single (s) 4.1 6.4 6.2 tC, stage 2 conf vol vC4, unblocked vol 112 353 98 tC, single (s) 4.1 6.4 6.2 tC, stage 2 conf vol vC4, unblocked vol 112 57 stage 2 conf vol stage 2 conf vol vC4, unblocked vol 112 58 1 stage 2 conf vol stage 2 conf vol <td></td> <td>27</td> <td></td> <td></td> <td>25</td> <td></td> <td>52</td> <td></td> <td></td>		27			25		52		
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 29 196 85 27 48 57 Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None None None None Median storage veh) Upstream signal (m) pX, platoon unblocked VC, conflicting volume 112 353 98 vC1, stage 1 conf vol vC2, stage 2 conf vol VC2, stage 1 conf vol VC2, stage 1 conf vol VC2, stage (s) T tf (s) 2.2 3.5 3.3 98 Q2 94 Volume Fork 98 92 94 Q4									
Hourly flow rate (vph) 29 196 85 27 48 57 Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median storage veh) None None </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 112 VCl, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol vC3, stage 2 conf vol vC4, unblocked vol tV2, stage 2 conf vol vC4, stage 2 conf vol vC4, stage 2 conf vol vC4, unblocked vol tV2, stage 2 conf vol vC4, stage 2 conf vol vC5, stage 2 conf vol vC4, stage 3 conf vol vC5, stage 2 conf vol vC5, stage 2 conf vol vC5, stage 2 conf vol vC4, stage 4 conf vol vC5, age 3 p0 queue free % 98 92 94 Volume Eft									
Lane Width (m) Walking Speed (m/s) Percent Blockage Right tum flare (veh) Median storage veh) Upstream signal (m) X, Jaton unblocked vC, conflicting volume 112 353 98 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC4, unblocked vol 112 353 98 tC, single (s) 4.1 tK (s) 2.2 355 3.3 p0 queue free % 98 92 94 cM capacity (veh/h) 1478 Volume Total 225 112 104 Volume Right 0 0 27 57 57 cSH 1478 1700 775 Volume Right 0 0.5 0.0 3.5 3.0 Control Delay (s) 1.1 0.10 4 Approach LOS B Approach LOS B		29	196	85	27	48	57		
Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None Median storage veh) Upstream signal (m) pX, platon unblocked vC, conflicting volume 112 VC, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage (s) tF (s) 2.2 353 98 Queue free % 98 90 queue free % 98 92 94 cM capacity (veh/h) 1478 1478 1700 Volume Total 225 Volume Total 225 Volume Right 0 0 27 CSH 1478 1700 775 Volume to Capacity 0.02 Outer to Capacity 0.02 0 1.1 0.0 10.4 Lane LOS A A B Approach LOS B Intersection Summary 3.0 Intersection Summary									
Percent Blockage None None None Right turn flare (veh) Median type None None Median type None None None Wedian storage veh) Upstream signal (m) pX, platon unblocked vC, conflicting volume 112 353 98 VC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage (s) tf (s) 98 tf (s) 12 3.53 98 VC2, stage (s) tf (s) 2.2 3.5 3.3 p0 queue free % 98 92 94 cM capacity (veh/h) 1478 632 958<									
Right turn flare (veh) None None None Median type None None None Median storage veh) Upstream signal (m) pX. pX. VC, conflicting volume 112 353 98 vC1, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol 112 353 98 vC1, single (s) 4.1 6.4 6.2 6.2 6.4 6.2 6.4 6.2 6.4 6.2 6.4 6.2 6.4 6.2 6.4 6.2 6.4 6.2 6.4 6.2 6.4 6.2 6.4 6.2 6.4 6.2 6.4 6.2 6.4 6.2 6.4 6.2 6.4 6.2 6.4 6.2 6.4 6.2 6.4 6.2 6.4 6.2 6.2 6.2 9.5 6.2 9.2 9.4 6.4 6.2 6.2 6.2 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5									
Median type None None None Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 112 353 98 vC1, stage 1 conf vol vC2, stage 2 conf vol vC4, conflicting volume 112 353 98 vC1, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol 112 353 98 vC1, stage 1 conf vol vC4, unblocked vol 112 353 98 1 vC1, single (s) 4.1 6.4 6.2 1<									
Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 112 353 98 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, unblocked vol 112 353 98 vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, unblocked vol 112 353 98 tC, single (s) 4.1 6.4 6.2 tC, 2 stage (s) tF (s) 2.2 3.5 3.3 p0 queue free % 98 92 94 cM capacity (veh/h) 1478 632 958 Direction, Lane # EB 1 WB 1 SB 1 Volume Total 225 112 104 Volume Right 0 27 57 cSH 1478 1700 775 Volume Right 0.2 0.07 0.13 Queue Length 95th (m) 0.5 0.0 3.5 Control Delay (s) 1.1 0.0 10.4 Lane LOS A B B	•								
Upstream signal (m) pX, platoon unblocked vC, conflicting volume 112 353 98 vC1, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol 112 353 98 vC2, stage 2 conf vol vC4, unblocked vol 112 353 98 vC4, unblocked vol 112 353 98 tC, single (s) 4.1 6.4 6.2 6.2 vC4, unblocked vol 112 353 98 tC, single (s) 4.1 6.4 6.2 0.2 3.5 3.3 p0 p0 queue free % 98 92 94 94 cM capacity (veh/h) 1478 632 958 p10 p11 p10 p11 p1			None	None					
pX, platoon unblocked 353 98 VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC1, unblocked vol 112 VC1, unblocked vol 112 353 98 VC2, stage 2 conf vol VC1, unblocked vol 112 353 98 VC1, unblocked vol 112 353 98 12 12 VC2, stage (s) 6.4 6.2 12 12 14 VC1, unblocked vol 1478 632 958 958 Direction, Lane # EB 1 WB 1 SB 1 104 Volume Total 225 112 104 104 Volume Left 29 0 48 104 Volume Right 0 27 57 57 cSH 1478 1700 775 112 104 Volume to Capacity 0.02 0.07 0.13 113 104 Queue Length 95th (m) 0.5 0.0 3.5 114 0.0 10.4 Approach Delay (s) 1.1 0.0									
vC, conflicting volume 112 353 98 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 112 353 98 vC, unblocked vol 112 353 98 vC vC, conflicting volume 112 vC vC, unblocked vol 112 353 98 vC									
vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 112 353 98 tC, single (s) 4.1 6.4 6.2 tC, 2 stage (s) t 632 94 p0 queue free % 98 92 94 cM capacity (veh/h) 1478 632 958 Direction, Lane # EB 1 WB 1 SB 1 Volume Total 225 112 104 Volume Total 225 112 104 Volume Total 225 112 104 Volume Right 0 27 57 cSH 1478 1700 775 Volume to Capacity 0.02 0.07 0.13 Queue Length 95th (m) 0.5 0.0 3.5 Control Delay (s) 1.1 0.0 10.4 Lane LOS A B Approach LOS B Intersection Summary 3.0 Intersection Capacity Utilization 29.9% Intersection Capacity Utilization 29.9% ICU Level of Service A							~~		
vC2, stage 2 conf vol vCu, unblocked vol 112 353 98 tC, single (s) 4.1 6.4 6.2 tC, 2 stage (s) t 6.4 6.2 tF (s) 2.2 3.5 3.3 p0 queue free % 98 92 94 cM capacity (veh/h) 1478 632 958 Direction, Lane # EB 1 WB 1 SB 1 Volume Total 225 112 104 Volume Edft 29 0 48 Volume Right 0 27 57 cSH 1478 1700 775 Volume to Capacity 0.02 0.07 0.13 Queue Length 95th (m) 0.5 0.0 3.5 Control Delay (s) 1.1 0.0 10.4 Lane LOS A B Approach LOS B B Intersection Summary 3.0 ICU Level of Service A		112				353	98		
vCu, unblocked vol 112 353 98 tC, single (s) 4.1 6.4 6.2 tC, 2 stage (s)									
tC, single (s) 4.1 6.4 6.2 tC, 2 stage (s) 3.5 3.3 p0 queue free % 98 92 94 cM capacity (veh/h) 1478 632 958 Direction, Lane # EB 1 WB 1 SB 1 Volume Total 225 112 104 Volume Right 0 27 57 cSH 1478 1700 775 Volume to Capacity 0.02 0.07 0.13 Queue Length 95th (m) 0.5 0.0 3.5 Control Delay (s) 1.1 0.0 10.4 Lane LOS A B Approach LOS B B Intersection Summary 3.0 Intersection Capacity Utilization Average Delay 3.0 ICU Level of Service A		440				050	00		
tC, 2 stage (s) 2.2 3.5 3.3 p0 queue free % 98 92 94 cM capacity (veh/h) 1478 632 958 Direction, Lane # EB 1 WB 1 SB 1 Volume Total 225 112 104 Volume Total 225 112 104 Volume Left 29 0 48 Volume Right 0 27 57 cSH 1478 1700 775 Volume to Capacity 0.02 0.07 0.13 Queue Length 95th (m) 0.5 0.0 3.5 Control Delay (s) 1.1 0.0 10.4 Lane LOS A B Approach Delay (s) 1.1 0.0 10.4 Approach LOS B B Intersection Summary 3.0 Intersection Capacity Utilization 29.9% ICU Level of Service A A									
tF (s) 2.2 3.5 3.3 p0 queue free % 98 92 94 cM capacity (veh/h) 1478 632 958 Direction, Lane # EB 1 WB 1 SB 1 Volume Total 225 112 104 Volume Left 29 0 48 Volume Right 0 27 57 cSH 1478 1700 775 Volume to Capacity 0.02 0.07 0.13 Queue Length 95th (m) 0.5 0.0 3.5 Control Delay (s) 1.1 0.0 10.4 Lane LOS A B Approach Delay (s) 1.1 0.0 10.4 Approach LOS B B Intersection Summary 3.0 ICU Level of Service A		4.1				6.4	6.2		
p0 queue free % 98 92 94 cM capacity (veh/h) 1478 632 958 Direction, Lane # EB 1 WB 1 SB 1 Volume Total 225 112 104 Volume Left 29 0 48 Volume Right 0 27 57 cSH 1478 1700 775 Volume to Capacity 0.02 0.07 0.13 Queue Length 95th (m) 0.5 0.0 3.5 Control Delay (s) 1.1 0.0 10.4 Lane LOS A B Approach LOS B B Intersection Summary 3.0 Intersection Capacity Utilization Average Delay 3.0 ICU Level of Service A		0.0				0.5	0.0		
cM capacity (veh/h) 1478 632 958 Direction, Lane # EB 1 WB 1 SB 1 Volume Total 225 112 104 Volume Left 29 0 48 Volume Right 0 27 57 cSH 1478 1700 775 Volume to Capacity 0.02 0.07 0.13 Queue Length 95th (m) 0.5 0.0 3.5 Control Delay (s) 1.1 0.0 10.4 Lane LOS A B Approach LOS B B Intersection Summary 3.0 ICU Level of Service A									
Direction, Lane # EB 1 WB 1 SB 1 Volume Total 225 112 104 Volume Left 29 0 48 Volume Right 0 27 57 cSH 1478 1700 775 Volume to Capacity 0.02 0.07 0.13 Queue Length 95th (m) 0.5 0.0 3.5 Control Delay (s) 1.1 0.0 10.4 Lane LOS A B Approach Delay (s) 1.1 0.0 10.4 Approach LOS B Intersection Summary Average Delay 3.0 Intersection Capacity Utilization 29.9%									
Volume Total 225 112 104 Volume Left 29 0 48 Volume Right 0 27 57 cSH 1478 1700 775 Volume to Capacity 0.02 0.07 0.13 Queue Length 95th (m) 0.5 0.0 3.5 Control Delay (s) 1.1 0.0 10.4 Lane LOS A B Approach Delay (s) 1.1 0.0 10.4 Approach LOS B B Intersection Summary 3.0 ICU Level of Service A						632	958		
Volume Left 29 0 48 Volume Right 0 27 57 cSH 1478 1700 775 Volume to Capacity 0.02 0.07 0.13 Queue Length 95th (m) 0.5 0.0 3.5 Control Delay (s) 1.1 0.0 10.4 Lane LOS A B Approach Delay (s) 1.1 0.0 10.4 Lane LOS A B Approach Delay (s) 1.1 0.0 10.4 Approach LOS B B Intersection Summary 3.0 ICU Level of Service A									
Volume Right 0 27 57 cSH 1478 1700 775 Volume to Capacity 0.02 0.07 0.13 Queue Length 95th (m) 0.5 0.0 3.5 Control Delay (s) 1.1 0.0 10.4 Lane LOS A B Approach Delay (s) 1.1 0.0 10.4 Approach LOS B B Intersection Summary 3.0 ICU Level of Service A									
cSH 1478 1700 775 Volume to Capacity 0.02 0.07 0.13 Queue Length 95th (m) 0.5 0.0 3.5 Control Delay (s) 1.1 0.0 10.4 Lane LOS A B Approach Delay (s) 1.1 0.0 10.4 Approach LOS B B Intersection Summary 3.0 Intersection Capacity Utilization 29.9% ICU Level of Service A									
Volume to Capacity 0.02 0.07 0.13 Queue Length 95th (m) 0.5 0.0 3.5 Control Delay (s) 1.1 0.0 10.4 Lane LOS A B Approach Delay (s) 1.1 0.0 10.4 Approach Delay (s) 1.1 0.0 10.4 Approach LOS B B Intersection Summary 3.0 Intersection Capacity Utilization 29.9%									
Queue Length 95th (m) 0.5 0.0 3.5 Control Delay (s) 1.1 0.0 10.4 Lane LOS A B Approach Delay (s) 1.1 0.0 10.4 Approach Delay (s) 1.1 0.0 10.4 Approach LOS B Intersection Summary 3.0 Intersection Capacity Utilization 29.9% ICU Level of Service A									
Control Delay (s) 1.1 0.0 10.4 Lane LOS A B Approach Delay (s) 1.1 0.0 10.4 Approach Delay (s) 1.1 0.0 10.4 Approach LOS B Intersection Summary Average Delay 3.0 Intersection Capacity Utilization 29.9% ICU Level of Service A									
Lane LOS A B Approach Delay (s) 1.1 0.0 10.4 Approach LOS B Intersection Summary Average Delay 3.0 Intersection Capacity Utilization 29.9% ICU Level of Service									
Approach Delay (s) 1.1 0.0 10.4 Approach LOS B Intersection Summary Average Delay 3.0 Intersection Capacity Utilization 29.9% ICU Level of Service			0.0						
Approach LOS B Intersection Summary 3.0 Average Delay 3.0 Intersection Capacity Utilization 29.9% ICU Level of Service A			0.0						
Intersection Summary Average Delay Intersection Capacity Utilization 29.9% ICU Level of Service A		1.1	0.0						
Average Delay 3.0 Intersection Capacity Utilization 29.9% ICU Level of Service A	Approach LUS			В					
Intersection Capacity Utilization 29.9% ICU Level of Service A									
Analysis Period (min) 15		ation			IC	CU Level o	of Service	А	
	Analysis Period (min)			15					

T. Beaver Ballik Road		guie Di	110				LULU	
	4	•	Ť	1	5	t –		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	۰Y		eî		٦	↑		
Volume (veh/h)	157	79	985	197	54	435		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	171	86	1071	214	59	473		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)			NULLE			NULLE		
Jpstream signal (m)								
oX, platoon unblocked								
	1760	1170			1005			
C, conflicting volume	1768	1178			1285			
C1, stage 1 conf vol								
vC2, stage 2 conf vol	4700	4470			4005			
Cu, unblocked vol	1768	1178			1285			
C, single (s)	6.4	6.2			4.1			
C, 2 stage (s)								
F (s)	3.5	3.3			2.2			
0 queue free %	0	63			89			
cM capacity (veh/h)	82	232			540			
irection, Lane #	WB 1	NB 1	SB 1	SB 2				
olume Total	257	1285	59	473				
/olume Left	171	0	59	0				
Volume Right	86	214	0	0				
SH	105	1700	540	1700				
/olume to Capacity	2.45	0.76	0.11	0.28				
Queue Length 95th (m)	175.9	0.0	2.8	0.0				
Control Delay (s)	747.2	0.0	12.5	0.0				
ane LOS	F		В					
Approach Delay (s)	747.2	0.0	1.4					
Approach LOS	F							
ntersection Summary								
verage Delay			92.8					
ntersection Capacity Utiliza	ation		84.0%	IC	U Level	of Service		E
Analysis Period (min)			15					
, , ,			-					

	≯	\mathbf{i}	•	Ť	Ŧ	∢		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	Υ			र्भ	4			
Volume (veh/h)	132	67	151	110	70	151		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	143	73	164	120	76	164		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	606	158	240					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol	000	450	040					
vCu, unblocked vol	606	158	240 4.1					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)	3.5	3.3	2.2					
tF (s) p0 queue free %	3.5 64	3.3 92	2.2 88					
cM capacity (veh/h)	403	92 887	1326					
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total	216	284	240					
Volume Left	143	164	0 164					
Volume Right cSH	73	0 1226	164 1700					
	494 0.44	1326 0.12	0.14					
Volume to Capacity Queue Length 95th (m)	0.44 16.7	0.12 3.2	0.14					
Control Delay (s)	10.7	5.2 5.1	0.0					
Lane LOS	0.17 C	5.1 A	0.0					
Approach Delay (s)	17.8	5.1	0.0					
Approach LOS	17.0 C	5.1	0.0					
	0							
Intersection Summary								
Average Delay			7.2			(A)	-	
Intersection Capacity Utiliza	ation		48.5%	IC	CU Level o	of Service	Α	
Analysis Period (min)			15					

	٦	-	-	•	1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations Volume (veh/h) Sign Control	67	4 145 Free	182 Free	58	¥ 49 Stop	54	
Grade Peak Hour Factor	0.92	0% 0.92	0% 0.92	0.92	0% 0.92	0.92	
Hourly flow rate (vph) Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh)	73	158	198	63	53	59	
Median type Median storage veh) Upstream signal (m) pX, platoon unblocked		None	None				
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	261				533	229	
vCu, unblocked vol	261				533	229	
tC, single (s) tC, 2 stage (s)	4.1				6.4	6.2	
tF (s)	2.2				3.5	3.3	
p0 queue free %	94				89	93	
cM capacity (veh/h)	1304				479	810	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	230	261	112				
Volume Left	73	0	53				
Volume Right cSH	0 1304	63 1700	59 610				
Volume to Capacity	0.06	0.15	0.18				
Queue Length 95th (m)	1.3	0.15	5.1				
Control Delay (s)	2.8	0.0	12.2				
Lane LOS	A	0.0	B				
Approach Delay (s)	2.8	0.0	12.2				
Approach LOS			В				
Intersection Summary							
Average Delay			3.4				
Intersection Capacity Utiliza	ation		40.5%	IC	U Level o	of Service	
Analysis Period (min)			15				